

AO4884L_001 Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number AO4884L_001-DG

Manufacturer Alpha & Omega Semiconductor Inc.

Manufacturer Product Number AO4884L_001

Description MOSFET 2N-CH 40V 10A 8SOIC

Detailed Description Mosfet Array 40V 10A 2W Surface Mount 8-SOIC

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
AO4884L_001	Alpha & Omega Semiconductor Inc.
Series:	Product Status:
	Obsolete
Technology:	Configuration:
MOSFET (Metal Oxide)	2 N-Channel (Dual)
FET Feature:	Drain to Source Voltage (Vdss):
Logic Level Gate	40V
Current - Continuous Drain (Id) @ 25°C:	Rds On (Max) @ Id, Vgs:
10A	13mOhm @ 10A, 10V
Vgs(th) (Max) @ Id:	Gate Charge (Qg) (Max) @ Vgs:
2.7V @ 250µA	33nC @ 10V
Input Capacitance (Ciss) (Max) @ Vds:	Power - Max:
1950pF @ 20V	2W
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Package / Case:	Supplier Device Package:
8-SOIC (0.154", 3.90mm Width)	8-SOIC
Base Product Number:	
AO488	

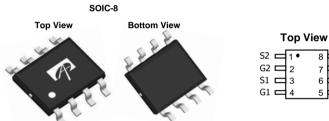
Environmental & Export classification

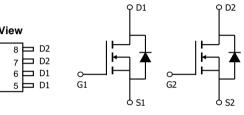
Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8541.29.0095

AO4884

40V Dual N-Channel MOSFET

General Description


The AO4884 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ with low gate charge. This is an all purpose device that is suitable for use in a wide range of power conversion applications.


Product Summary

 $\begin{array}{lll} V_{DS} & 40V \\ I_{D} \; (at \, V_{GS} \! = \! 10V) & 10A \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 10V) & < 13 m\Omega \\ R_{DS(ON)} \; (at \, V_{GS} \! = \! 4.5V) & < 16 m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	40	V		
Gate-Source Voltage		V _{GS}	±20	V		
Continuous Drain Current	T _A =25°C	1	10			
	T _A =70°C	ID	8	A		
Pulsed Drain Current C		I _{DM}	50			
Avalanche Current ^C		I _{AS} , I _{AR}	35	A		
Avalanche energy L	=0.1mH ^C	E _{AS} , E _{AR}	61	mJ		
	T _A =25°C	Ь	2	W		
Power Dissipation $^{\rm B}$	T _A =70°C	$-P_{D}$	1.3	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C		

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	48	62.5	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	ГС⊕ЈД	74	90	°C/W	
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	32	40	°C/W	

Electrical Characteristics (T_{.1}=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		40			V
l	Zero Gate Voltage Drain Current	V _{DS} =40V, V _{GS} =0V				1	^
I _{DSS}	Zero Gate Voltage Drain Current		T _J =55°C			5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		1.55	2.2	2.7	V
I _{D(ON)}	On state drain current	V_{GS} =10V, V_{DS} =5V	V _{GS} =10V, V _{DS} =5V				Α
		V_{GS} =10V, I_D =10A			11	13	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125°C		16.5	20	1112.2
		V_{GS} =4.5V, I_D =10A			12.7	16	mΩ
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=10A$			50		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
Is	Maximum Body-Diode Continuous Curr	ent				2.5	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance			1200	1500	1950	pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =20V, f=	V _{GS} =0V, V _{DS} =20V, f=1MHz		215	280	pF
C _{rss}	Reverse Transfer Capacitance				135	190	pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.7	3.5	5.3	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge			22	27.2	33	nC
Q _g (4.5V)	Total Gate Charge	\/ . =10\/ \/ . =20\/ I	-104	10	13.6	16	nC
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =20V, I _D =10A		3.6	4.5	5.4	nC
Q_{gd}	Gate Drain Charge			3.8	6.4	9	nC
t _{D(on)}	Turn-On DelayTime				6.4		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =20V, R_L =2 Ω , R_{GEN} =3 Ω			17.2		ns
t _{D(off)}	Turn-Off DelayTime				29.6		ns
t _f	Turn-Off Fall Time				16.8		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dI/dt=500A/μ	S	9	13	17	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =10A, dI/dt=500A/μ	s	25	35	45	nC

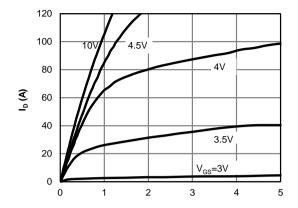
A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

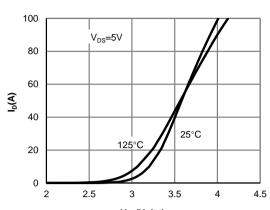
AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

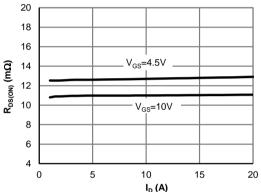
B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.

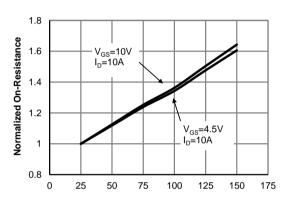
C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep initialT $_J$ =25 $^\circ$ C.

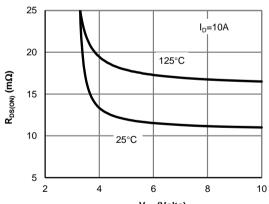

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

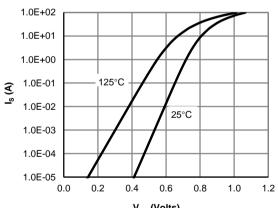
E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.


F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

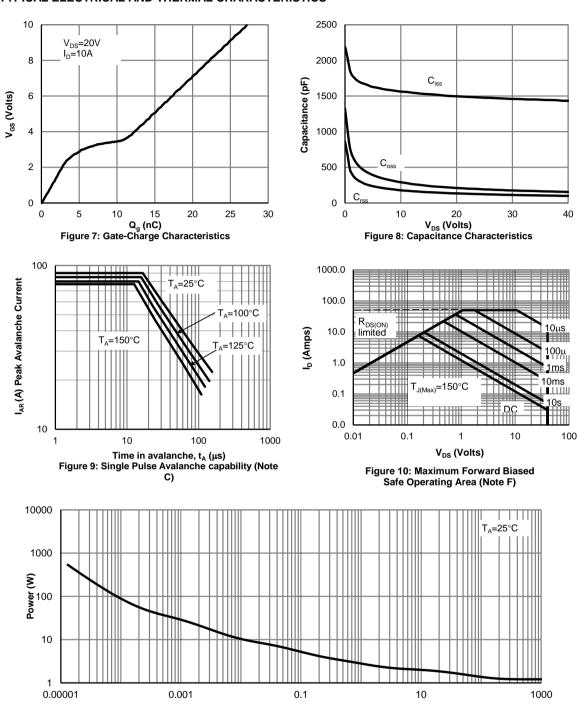

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

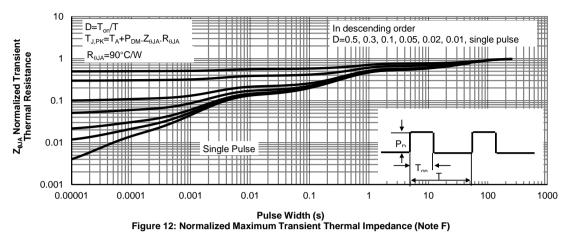

 $V_{\rm GS}({
m Volts})$ Figure 2: Transfer Characteristics (Note E)


 $\rm I_D$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

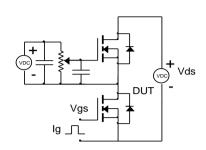
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

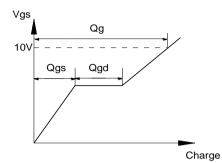

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

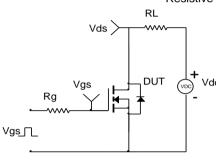
V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

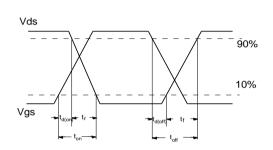

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

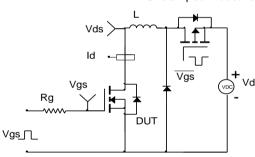
Pulse Width (s)
Figure 11: Single Pulse Power Rating Junction-to-Ambient (Note F)

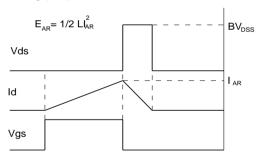


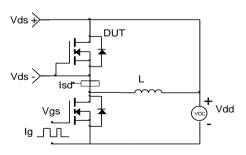

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

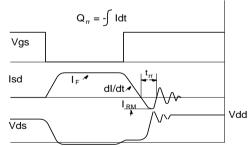



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935