

IRF9Z34NL Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number IRF9Z34NL-DG

Manufacturer Infineon Technologies

Manufacturer Product Number IRF9Z34NL

Description MOSFET P-CH 55V 19A TO262

Detailed Description P-Channel 55 V 19A (Tc) 3.8W (Ta), 68W (Tc) Throug

h Hole TO-262

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
IRF9Z34NL	Infineon Technologies
Series:	Product Status:
HEXFET®	Obsolete
FET Type:	Technology:
P-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
55 V	19A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
10V	100mOhm @ 10A, 10V
Vgs(th) (Max) @ Id:	Gate Charge (Qg) (Max) @ Vgs:
4V @ 250μA	35 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	620 pF @ 25 V
FET Feature:	Power Dissipation (Max):
	3.8W (Ta), 68W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 175°C (TJ)	Through Hole
Supplier Device Package:	Package / Case:
TO-262	TO-262-3 Long Leads, I2PAK, TO-262AA

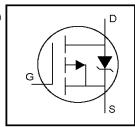
Environmental & Export classification

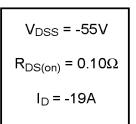
8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

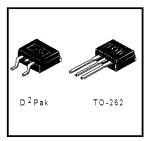
International Rectifier

IRF9Z34NSPbFIRF9Z34NLPbF


- Advanced Process Technology
- Surface Mount (IRF9Z34NS)
- Low-profile through-hole (IRF9Z34NL)
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated
- Lead-Free


Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.


The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible onresistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

The through-hole version (IRF9Z34NL) is available for low-profile applications.

PD-95769

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V ^⑤	-19	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V ^⑤	-14	Α
I _{DM}	Pulsed Drain Current ①⑤	-68	
P _D @T _A =25°C	Power Dissipation	3.8	W
P _D @T _C = 25°C	Power Dissipation	68	W
	Linear Derating Factor	0.45	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy②⑤	180	mJ
l _{AR}	Avalanche Current①	-10	A
E _{AR}	Repetitive Avalanche Energy①	6.8	mJ
d∨/dt	Peak Diode Recovery dv/dt ③⑤	-5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
Reuc	Junction-to-Case		2.2	90.00
R _{BJA}	Junction-to-Ambient (PCB Mounted, steady-state)**		40	°C/W

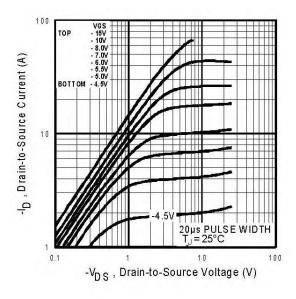
International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Parameter	Min.	Тур.	Max.	Units	Conditions	
Drain-to-Source Breakdown Voltage	-55			٧	$V_{GS} = 0V$, $I_{D} = -250\mu A$	
Breakdown Voltage Temp. Coefficient	-	-0.05		V/°C	Reference to 25°C, I _D = -1mA [©]	
Static Drain-to-Source On-Resistance			0.10	Ω	V _{GS} = -10V, I _D = -10A ④	
Gate Threshold Voltage	-2.0		-4.0	٧	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	
Forward Transconductance	4.2		-	S	V _{DS} = -25V, I _D = -10A [©]	
Drain to Source Leekage Current			-25	А	V_{DS} = -55V, V_{GS} = 0V	
Diali-to-Source Leakage Current			-250	μΑ	$V_{DS} = -44V, V_{GS} = 0V, T_{J} = 150$ °C	
Gate-to-Source Forward Leakage			100	- ^	V _{GS} = 20V	
Gate-to-Source Reverse Leakage			-100	nA .	V _{GS} = -20V	
Total Gate Charge			35		I _D = -10A	
Gate-to-Source Charge			7.9	nC	V _{DS} = -44V V _{GS} = -10V, See Fig. 6 and 13 @	
Gate-to-Drain ("Miller") Charge			16			
Turn-On Delay Time		13			V _{DD} = -28V	
Rise Time		55			I _D = -10A	
Turn-Off Delay Time	-	30		115	$R_G = 13\Omega$ $R_D = 2.6\Omega$, See Fig. 10 \circledast	
Fall Time		41				
Internal Source Inductance		7.5		nH	Between lead, and center of die contact	
Input Capacitance		620			V _{GS} = 0V	
Output Capacitance		280	-	pF	V _{DS} = -25V	
Reverse Transfer Capacitance		140	-		f = 1.0MHz, See Fig. 5⑤	
	Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Source Inductance Input Capacitance Output Capacitance	Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Source Inductance Input Capacitance Output Capacitance ———————————————————————————————————	Drain-to-Source Breakdown Voltage -55 — Breakdown Voltage Temp. Coefficient — -0.05 Static Drain-to-Source On-Resistance — — Gate Threshold Voltage -2.0 — Forward Transconductance 4.2 — Drain-to-Source Leakage Current — — Gate-to-Source Forward Leakage — — Gate-to-Source Reverse Leakage — — Total Gate Charge — — Gate-to-Source Charge — — Gate-to-Drain ("Miller") Charge — — Turn-On Delay Time — 13 Rise Time — 55 Turn-Off Delay Time — 30 Fall Time — 41 Internal Source Inductance — 620 Output Capacitance — 280	Drain-to-Source Breakdown Voltage -55 — — Breakdown Voltage Temp. Coefficient — -0.05 — Static Drain-to-Source On-Resistance — — 0.10 Gate Threshold Voltage -2.0 — -4.0 Forward Transconductance 4.2 — — Drain-to-Source Leakage Current — -25 — -25 Gate-to-Source Forward Leakage — — -100 Gate-to-Source Reverse Leakage — — -100 Total Gate Charge — — -35 Gate-to-Source Charge — — 7.9 Gate-to-Drain ("Miller") Charge — — 16 Turn-On Delay Time — 55 — Turn-Off Delay Time — 30 — Fall Time — 41 — Internal Source Inductance — 620 — Output Capacitance — 280 —	Drain-to-Source Breakdown Voltage -55 — — V Breakdown Voltage Temp. Coefficient — -0.05 — V/°C Static Drain-to-Source On-Resistance — 0.10 Ω Gate Threshold Voltage -2.0 — -4.0 V Forward Transconductance 4.2 — — S Drain-to-Source Leakage Current — -25 — +2 — S Gate-to-Source Leakage Current — — -25 — +2 — - -25 — +4 — -250 — +4 — -250 — +4 — -250 — +4 — -250 — +A - -250 — +A - -250 — -A -100 -A -100 -A -100 -100	

Source-Drain Ratings and Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)	_	_	-19	A	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①	-	_	-68		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25^{\circ}C$, $I_S = -10A$, $V_{GS} = 0V$ ①
trr	Reverse Recovery Time		54	82	ns	T _J = 25°C, I _F = -10A
Qm	Reverse Recovery Charge	-	110	160	nC	di/dt = -100A/µs ⊕⑤
ton	Forward Turn-On Time	Intr	insic tu	irn-on ti	me is ne	egligible (tum-on is dominated by L _S +L _D

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- $\begin{tabular}{ll} \hline \& Starting $T_J=25^{\circ}C$, $L=3.6mH$ \\ $R_G=25\Omega$, $I_{AS}=-10A$. (See Figure 12) \\ \hline \end{tabular}$
- S Uses IRF9Z34N data and test conditions
- $\label{eq:loss_loss} \begin{array}{l} \text{ } \\ \text{ } \\$
- ** When mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended footprint and soldering techniques refer to application note #AN-994.

International TOR Rectifier

IRF9Z34NS/LPbF

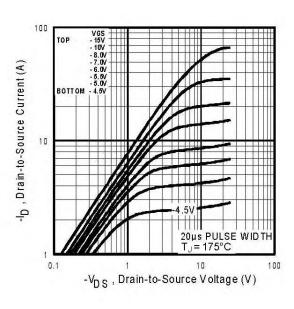
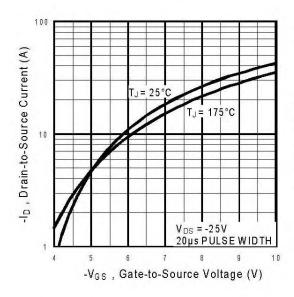



Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

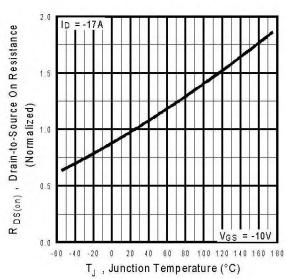
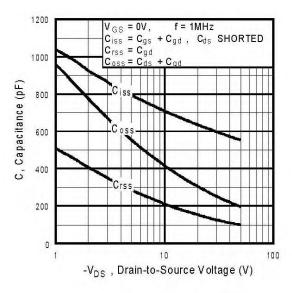
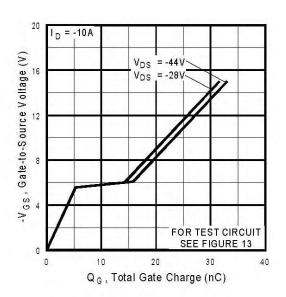



Fig 3. Typical Transfer Characteristics


Fig 4. Normalized On-Resistance Vs. Temperature

International

Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

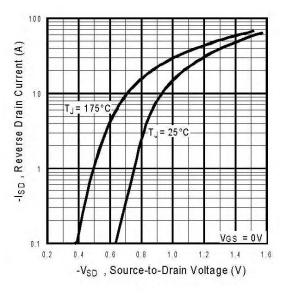


Fig 7. Typical Source-Drain Diode Forward Voltage

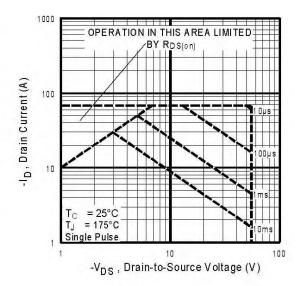
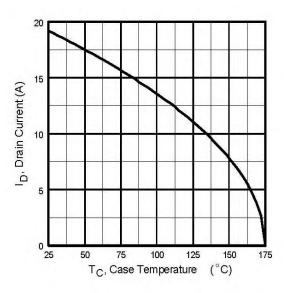



Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF9Z34NS/LPbF

Fig 9. Maximum Drain Current Vs. Case Temperature

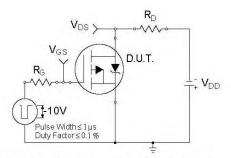


Fig 10a. Switching Time Test Circuit

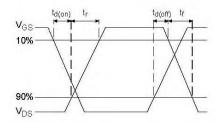


Fig 10b. Switching Time Waveforms



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

TOR Rectifier

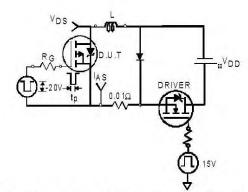


Fig 12a. Unclamped Inductive Test Circuit

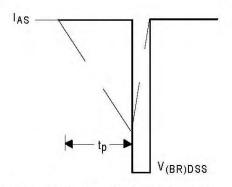


Fig 12b. Unclamped Inductive Waveforms

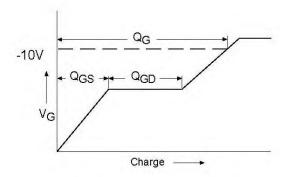
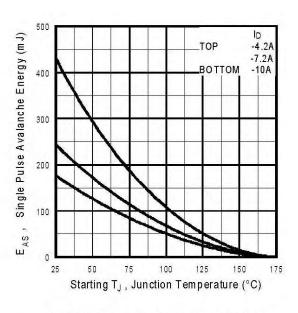



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

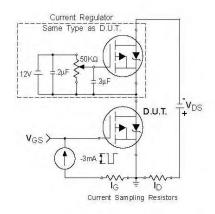
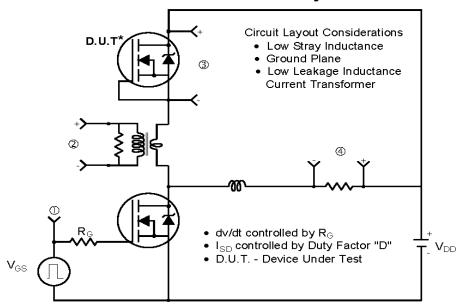
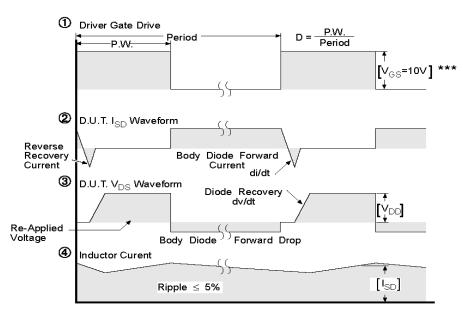



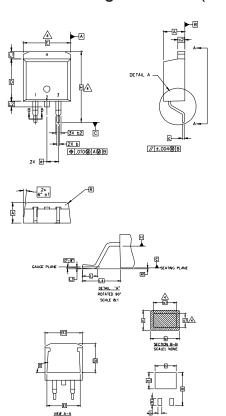
Fig 13b. Gate Charge Test Circuit


International TOR Rectifier

IRF9Z34NS/LPbF

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

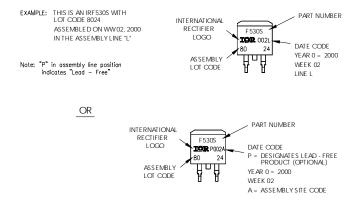


*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

International TOR Rectifier

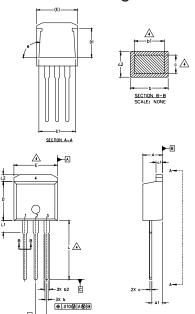
$D^2 Pak \ \ Package \ \ Outline \ \ \ (\hbox{\tiny Dimensions are shown in millimeters (inches)}$


4. DIMENSION 61 AND c1 APPLY TO BASE MI						
5.	CONTROL	LING DIM	ENSION: I	NCH.		
S Y M		DIMENSIONS				
B	MILLIM	ETERS	INC	HES	O T	
L	MIN.	MAX.	MIN.	MAX.	E S	
Α	4.06	4.83	.160	.190		
A1	0.00	0.254	.000	.010		
b	0.51	0.99	.020	.039		
ь1	0.51	0.89	.020	.035	4	
b2	1,14	1,78	.045	.070		
С	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	4	
c2	1.14	1.65	.045	.065		
D	8.51	9.65	.335	.380	3	
D1	6.86		.270			
Ε	9.65	10.67	.380	.420	3	
E1	6.22		.245			
e	2,54	BSC	.100	BSC		
Н	14.61	15,88	.575	.625		
L	1.78	2.79	.070	,110		
L1		1.65		.065		
L2	1.27	1.78	.050	.070		
L3	0.25	BSC	.010	BSC		
L4	4.78	5.28	.188	.208		
m	17,78		.700			
m1	8.89		.350			
n	11,43		.450			
0	2.08		.082			
Р	3.81		.150			
R	0.51	0,71	.020	.028		
θ	90.	93*	90.	93*		

DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005*] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

LEAD ASSIGNMENTS HEXFET 1.— GATE 2. 4.— DRAIN 3.— SOURCE IGHTS. COPACK 1.— GATE 2. 4.— COLLECTOR 3.— EMITTER DIODES 1.— ANODE * 2. 4.— CATHODE 3.— ANODE * PART DEPENDENT.


D²Pak Part Marking Information

International IOR Rectifier

IRF9Z34NS/LPbF

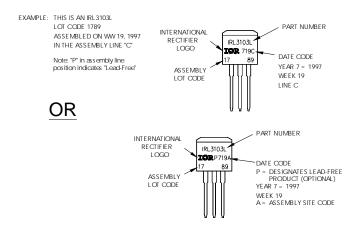
TO-262 Package Outline (Dimensions are shown in millimeters (inches)

S Y M		N N			
BO	MILLIM	ETERS	INC	HES	N O T E S
L	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1	2.03	2.92	.080	,115	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	4
b2	1.14	1.40	.045	.055	
С	0.38	0.63	.015	.025	4
с1	1.14	1.40	.045	.055	
c2	0.43	.063	.017	.029	
D	8.51	9.65	.335	.380	3
D1	5.33		.210		
Ε	9.65	10.67	.380	.420	3
E1	6.22		.245		
е	2.54	BSC	.100 BSC		
L	13,46	14.09	.530	.555	
L1	3.56	3,71	.140	.146	
L2		1.65		.065	
-				1	

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE, THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

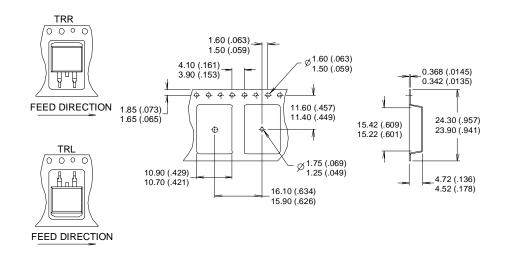
LEAD ASSIGNMENTS

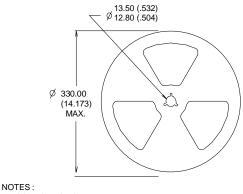

4.- DRAIN

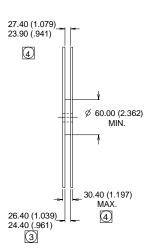
HEXFET <u>IGBT</u> 1 - GATE

2.- DRAIN

2 - COLLECTOR 3.- SOURCE 3 - EMITTER


TO-262 Part Marking Information




International TOR Rectifier

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

COMFORMS TO EIA-418.
CONTROLLING DIMENSION: MILLIMETER.

DIMENSION MEASURED @ HUB.

INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 04/05

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie") .

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com