

4B88151APNF-G-100-JNEFE1 Datashee

 DiGi Electronics Part Number
 MB88151APNF-G-100-JNEFE1-DG

 Manufacturer
 Infineon Technologies

 Manufacturer Product Number
 MB88151APNF-G-100-JNEFE1

 Description
 IC FANOUT BUFFER 8SOP

 Detailed Description
 Fanout Buffer (Distribution), Spread Spectrum Cloc k Generator IC 33.4MHz 1 8-SOIC (0.154", 3.90mm W idth)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MB88151APNF-G-100-JNEFE1	Infineon Technologies
Series:	Product Status:
	Discontinued at Digi-Key
DiGi-Electronics Programmable:	Туре:
Not Verified	Fanout Buffer (Distribution), Spread Spectrum Clock Generator
PLL:	Input:
Yes	Crystal
Output:	Number of Circuits:
CMOS	1
Ratio - Input:Output:	Differential - Input:Output:
1:1	No/No
Frequency - Max:	Divider/Multiplier:
33.4MHz	No/Yes
Voltage - Supply:	Operating Temperature:
3V ~ 3.6V	-40°C ~ 85°C
Mounting Type:	Package / Case:
Surface Mount	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package:	Base Product Number:
8-SOP	MB88151

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	3 (168 Hours)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

Spread Spectrum Clock Generator

CY88151A is a clock generator for EMI (Electro Magnetic Interference) reduction. The peak of unnecessary radiation noise (EMI) can be attenuated by making the oscillation frequency slightly modulate periodically with the internal modulator. It corresponds to both of the center spread which modulates frequency in modulation off as Middle Centered and down spread which modulates so as not to exceed frequency in modulation off.

Features

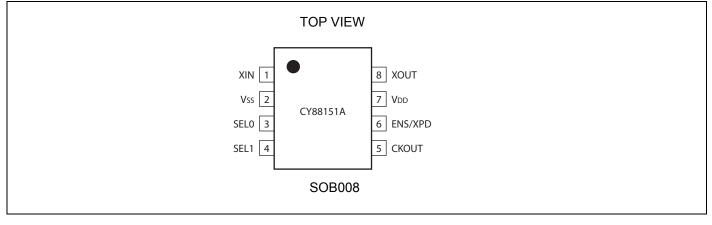
	CY88151A-100 (Multiply-by-1)	CY88151A-200 (Multiply-by-2)
Input frequency/ Output frequency	16.6 MHz to 33.4 MHz/ 16.6 MHz to 33.4 MHz	16.6 MHz to 33.4 MHz/ 33.2 MHz to 66.8 MHz
Modulation clock cycle-cycle jitter	Less than100 ps	Less than 100 ps

- Modulation rate : ±0.5%, ±1.5% (Center spread), -1.0%, -3.0% (Down spread)
- Equipped with oscillation circuit : Range of oscillation 16.6 MHz to 33.4 MHz
- Modulation clock output Duty : 40% to 60%
- Low current consumption by CMOS process : 5 mA (24 MHz : Typ-sample, no load)
- \blacksquare Power supply voltage : 3.3 V \pm 0.3 V
- Operating temperature : $-40 \degree C$ to $+85 \degree C$
- Package : SOP 8-pin

Contents

PRODUCT LINEUP	3
PIN ASSIGNMENT	3
PIN DESCRIPTION	3
I/O CIRCUIT TYPE	4
HANDLING DEVICES	6
PREVENTING LATCH-UP	6
HANDLING UNUSED PINS	6
THE ATTENTION WHEN THE EXTERNAL CLOCK IS USED	6
Power supply pins	6
OSCILLATION CIRCUIT	6
BLOCK DIAGRAM	7
PIN SETTING	8
ABSOLUTE MAXIMUM RATINGS	10
RECOMMENDED OPERATING CONDITIONS	11

ELECTRICAL CHARACTERISTICS	2
OUTPUT CLOCK DUTY CYCLE (TDCC = TB/TA)	5
INPUT FREQUENCY (FIN = 1/TIN)	5
OUTPUT SLEW RATE (SR)	5
CYCLE-CYCLE JITTER (TJC = TN - TN+1)	6
MODULATION WAVEFORM	7
LOCK-UP ТIME	8
OSCILLATION CIRCUIT	0
INTERCONNECTION CIRCUIT EXAMPLE	1
SPECTRUM EXAMPLE CHARACTERISTICS	2
ORDERING INFORMATION	3
PACKAGE DIMENSION	4
DOCUMENT HISTORY	
SALES, SOLUTIONS, AND LEGAL INFORMATION	6

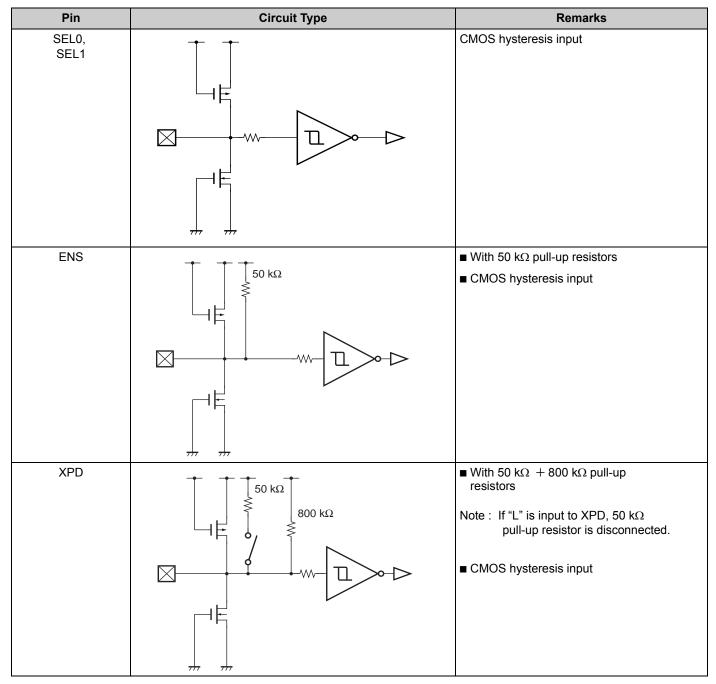


1. Product Lineup

CY88151A has five kinds of multiplication type.

Product	Input Frequency Range	Multiplier Ratio	Output Frequency Range
CY88151A-100	16.6 MHz to 33.4 MHz -	Multiply-by-1	16.6 MHz to 33.4 MHz
CY88151A-200		Multiply-by-2	33.2 MHz to 66.8 MHz

2. Pin Assignment


3. Pin Description

Pin Name	I/O	Pin No.	Description
XIN	I	1	Resonator connection pin/clock input pin
Vss		2	GND pin
SEL0	I	3	Modulation rate setting pin
SEL1	I	4	Modulation rate setting pin
CKOUT	0	5	Modulated clock output pin
ENS/XPD	I	6	Modulation enable setting pin (with pull-up resistance)/ Power down pin (with pull-up resistor)*
Vdd		7	Power supply voltage pin
XOUT	0	8	Resonator connection pin

* : XPD = 800 k Ω pull-up resistor at "L"

4. I/O Circuit Type

(Continued)

(Continued)

Pin	Circuit Type	Remarks
CKOUT	+	CMOS output
		■ IoL = 4 mA

Note : For XIN and XOUT pins, refer to "Oscillation Circuit".

5. Handling Devices

5.1 Preventing Latch-up

A latch-up can occur if, on this device, (a) a voltage higher than V_{DD} or a voltage lower than V_{SS} is applied to an input or output pin or (b) a voltage higher than the rating is applied between V_{DD} pin and V_{SS} pin. The latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use this device, be very careful not to exceed the maximum rating.

5.2 Handling Unused Pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, using a pull-up or pull-down resistor.

Unused output pin should be opened.

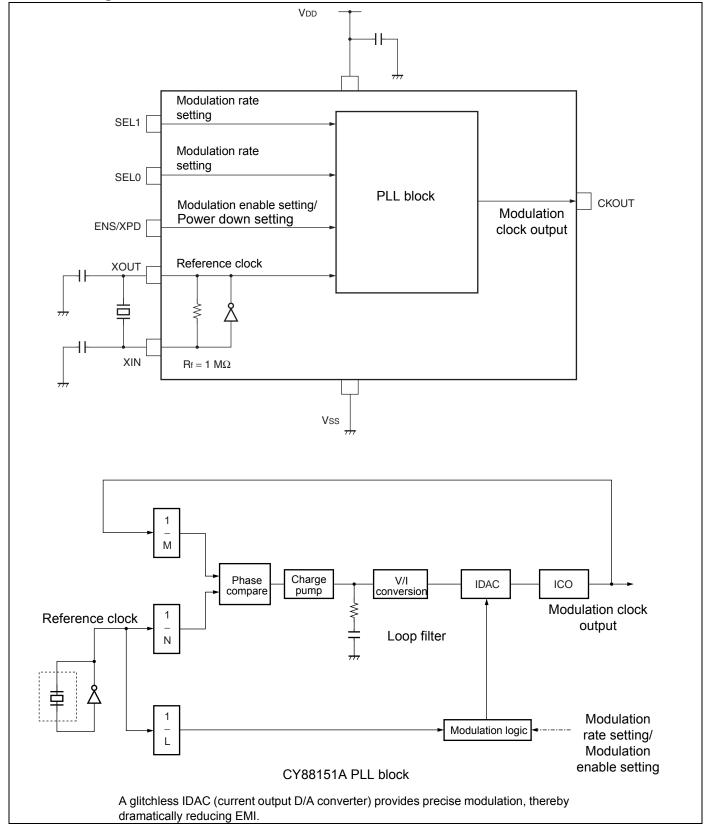
5.3 The Attention when the External Clock is Used

Input the clock to XIN pin, and XOUT pin should be opened when you use the external clock. Please pay attention so that an overshoot and an undershoot do not occur to an input clock of XIN pin.

5.4 Power Supply Pins

Please design connecting the power supply pin of this device by as low impedance as possible from the current supply source.

We recommend connecting electrolytic capacitor (about 10 μ F) and the ceramic capacitor (about 0.01 μ F) in parallel between Vss pin and V_{DD} pin near the device, as a bypass capacitor.


5.5 Oscillation Circuit

Noise near the XIN and XOUT pins may cause the device to malfunction. Design printed circuit boards so that electric wiring of XIN or XOUT pin and the resonator do not intersect other wiring.

Design the printed circuit board that surrounds the XIN and XOUT pins with ground.

6. Block Diagram

7. Pin Setting

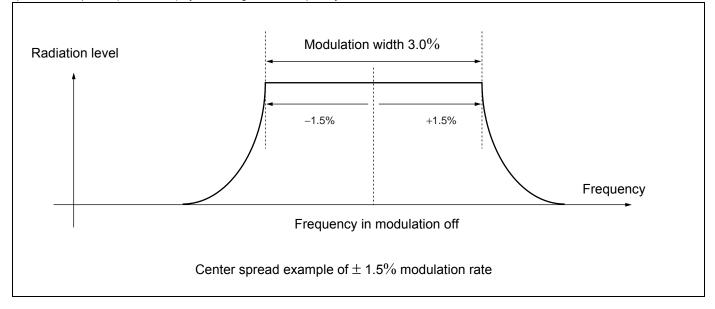
When changing the pin setting, the stabilization wait time for the modulation clock is required. The stabilization wait time for the modulation clock take the maximum value of "Electrical Characteristics AC Characteristics Lock-up time".

ENS Modulation Enable Setting (CY88151A-100/200)

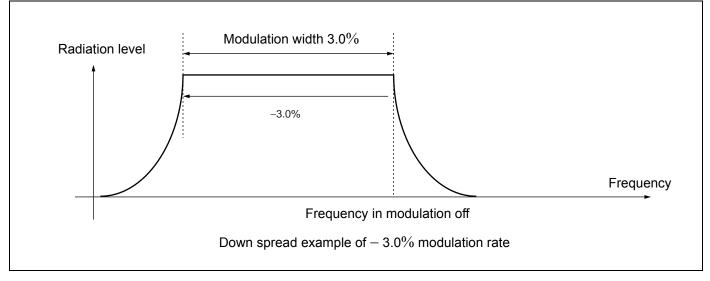
ENS	Modulation
L	No modulation
Н	Modulation

Note : Spectrum does not spread when "L" is set to ENS. The clock with low jitter can be obtained. Because of ENS has Pull-up resistance, spectrum spread when "H" is set to it or open the terminal.

SEL0, SEL1 Modulation Rate Setting


SEL1	SEL0	Modulation Rate Modulation Type	
L	L	± 1.5%	Center spread
L	Н	± 0.5%	Center spread
Н	L	- 1.0%	Down spread
Н	Н	- 3.0%	Down spread

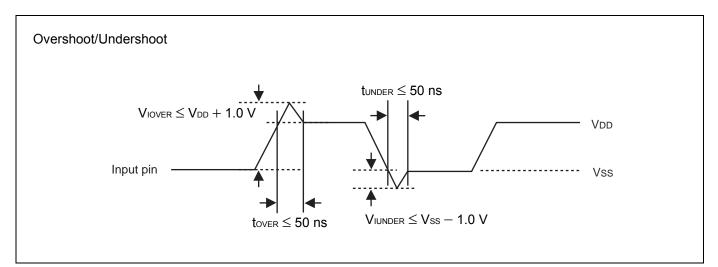
Note : The modulation rate can be changed at the level of the terminal.


Center Spread

Spectrum is spread (modulated) by centering on the frequency in modulation off.

Down Spread

Spectrum is spread (modulated) below the frequency in modulation off.

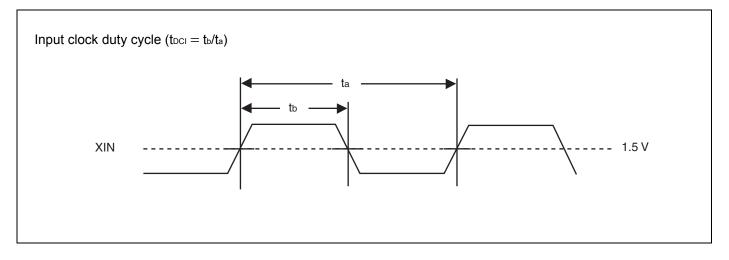


8. Absolute Maximum Ratings

Parameter	Symbol	Rating			
	Symbol	Min	Max	Unit	
Power supply voltage*	VDD	- 0.5	+ 4.0	V	
Input voltage*	Vı	Vss - 0.5	Vdd + 0.5	V	
Output voltage*	Vo	Vss - 0.5	Vdd + 0.5	V	
Storage temperature	Tst	- 55	+ 125	°C	
Operation junction temperature	TJ	- 40	+ 125	°C	
Output current	lo	- 14	+ 14	mA	
Overshoot	VIOVER	V _{DD} + 1.0 (tover ≤ 50 ns)		V	
Undershoot	VIUNDER	Vss-1.0 (tunder \leq 50 ns)		V	

* : The parameter is based on $V_{\mbox{\scriptsize SS}}=0.0$ V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.


9. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter Symb	Symbol	mbol Pin	Conditions	Value			Unit
	Symbol			Min	Тур	Мах	Unit
Power supply voltage	Vdd	Vdd		3.0	3.3	3.6	V
"H" level input voltage	Vih	XIN,		V _{DD} × 0.8		$V_{\text{DD}} + 0.3$	V
"L" level input voltage	VIL	SEL0, SEL1, ENS		Vss		V _{DD} × 0.2	V
Input clock duty cycle	toci	XIN	16.6 MHz to 33.4 MHz	40	50	60	%
Operating temperature	Та			- 40		+ 85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

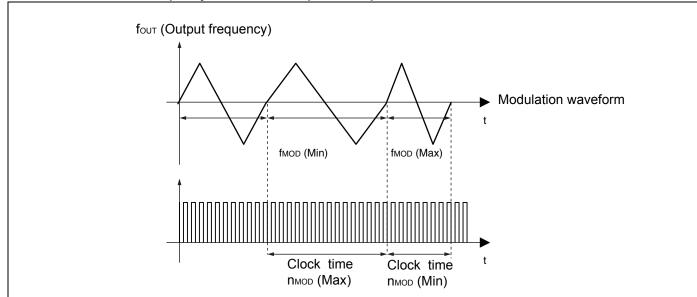
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

10. Electrical Characteristics

DC Characteristics

(Ta = - 40 °C to $\,+$ 85 °C, V_{DD} = 3.3 V \pm 0.3 V, Vss = 0.0 V)

Parameter	Symbol	Pin	Conditions		Value	alue		
Falailletei	Symbol	FIII	Conditions	Min	Тур	Max	Unit	
Power supply current	lcc	Vdd	No load capacitance at output 24 MHz CY88151A-100	_	5.0	7.0	mA	
	Vон	скоит	"H" level output, $I_{OH} = -4 \text{ mA}$	$V_{\text{DD}}-0.5$		Vdd	V	
Output voltage	Vol	CKOUT	"L" level output, Io∟ = 4 mA	Vss	_	0.4	V	
Output impedance	Zo	CKOUT	16.6 MHz to 66.8 MHz		45		Ω	
Input capacitance	Cin	XIN, SEL0, SEL1, ENS	$\label{eq:tau} \begin{array}{l} {Ta} = \ + \ 25 \ ^{\circ}C, \\ {V}_{\text{DD}} = V_{\text{I}} = 0.0 \ V, \\ f = 1 \ MHz \end{array}$			16	pF	
Load capacitance	C∟	CKOUT	16.6 MHz to 66.8 MHz			15	pF	
	Rpue	ENS	$V_{\text{IL}}=0.0 \ V$	25	50	200	kΩ	
Input pull-up resistance	Rpup	XPD	$V{\scriptscriptstyle I\!L}=0.0~V$	500	800	1200	N32	

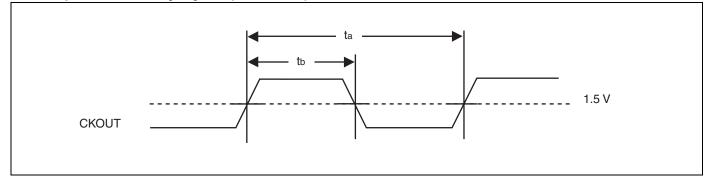


AC Characteristics

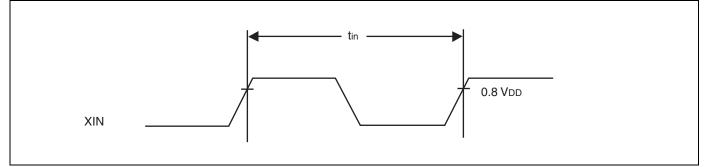
$(Ta = -40 \text{ °C to } + 85 \text{ °C}, V_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = 0.0 \text{ V})$								
Parameter	Symbol	Pin	Conditions	Value			Unit	
Parameter	Symbol	FIII	Conditions	Min	Тур	Max	onit	
Oscillation frequency	fx	XIN, XOUT	Fundamental oscillation	8.3	_	33.4	MHz	
Input frequency	fin	XIN	External clock input (multiply-by-1, 2)	16.6	_	33.4	MHz	
	fouт	СКОИТ	CY88151A-100 (Multiply by 1)	16.6	_	33.4	MHz	
Output frequency			CY88151A-200 (Multiply by 2)	33.2		66.8	IVITIZ	
Output slew rate	SR	CKOUT	0.4 V to 2.4 V Load capacitance 15 pF	0.4		4.0	V/ns	
Output clock duty cycle	tDCC	CKOUT	1.5 V	40	_	60	%	
Modulation period (Number of input clocks per modulation)	fмод (nмод)	СКОИТ	CY88151A-100, CY88151A-200	fin/2200 (2200)	fin/1900 (1900)	fin/1600 (1600)	kHz (clks)	
Lock-up time	t∟ĸ	CKOUT	16.6 MHz to 66.8 MHz		2	5	ms	
Cycle-cycle jitter	tjc	СКОИТ	CY88151A-100 CY88151A-200 No load capacitance, Ta = $+25$ °C, V _{DD} = 3.3 V	_		100	ps-rms	

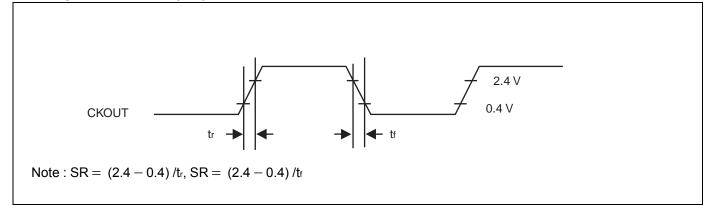
Note : The modulation clock stabilization wait time is required after the power is turned on, the IC recovers from power saving, or after FREQ (frequency range) or ENS (modulation ON/OFF) setting is changed. For the modulation clock stabilization wait time, assign the maximum value for lock-up time.

<Definition of modulation frequency and number of input clocks per modulation>


CY88151A contains the modulation period to realize the efficient EMI reduction.

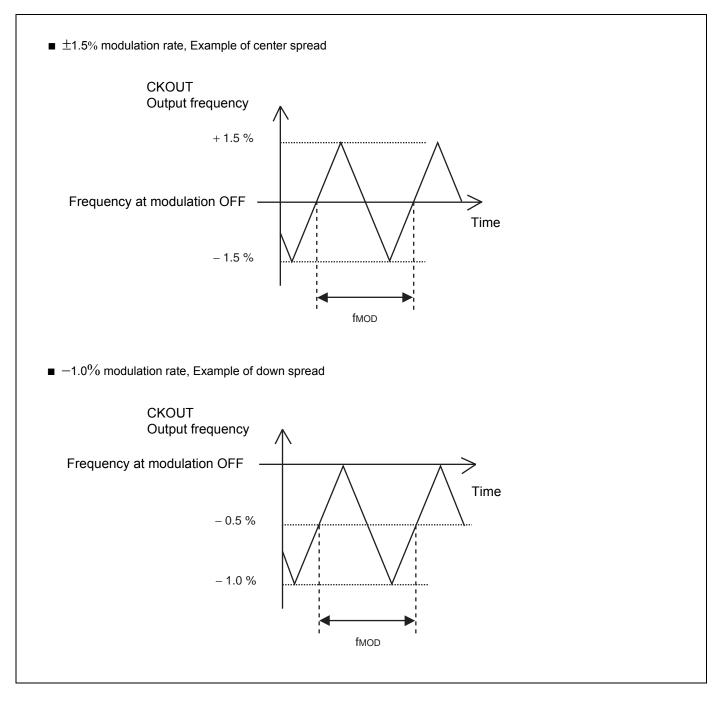
The modulation period f_{MOD} depends on the input frequency and changes between f_{MOD} (Min) and f_{MOD} (Max).


Furthermore, the average value of fmod equals the typical value of the electrical characteristics.


11. Output Clock Duty Cycle (t_{Dcc} = t_b/t_a)

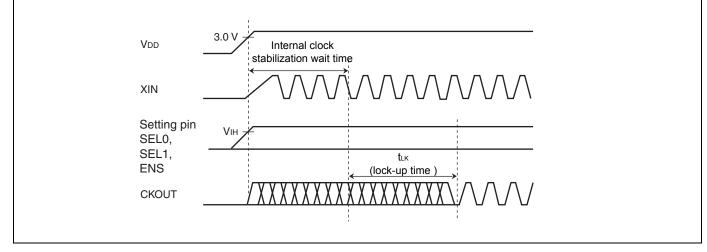
12. Input Frequency ($f_{in} = 1/t_{in}$)

13. Output Slew Rate (SR)

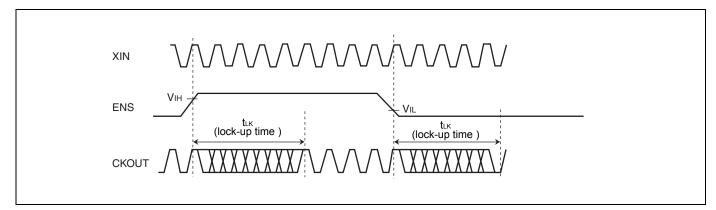


14. Cycle-cycle Jitter (t_{Jc} = | t_n - t_{n+1} |)

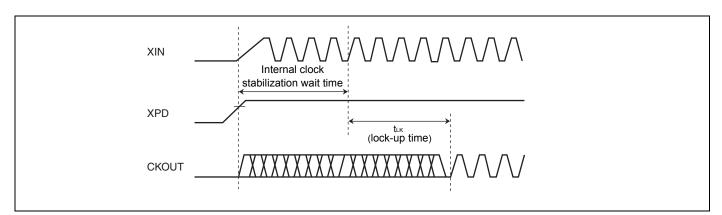
Note : Cycle-cycle jitter is defined the difference between a certain cycle and immediately after (or, immediately before) .



15. Modulation Waveform

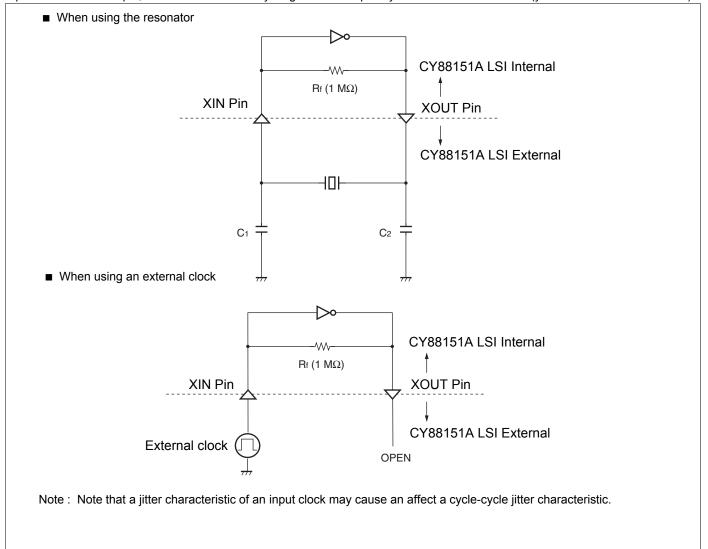


16. Lock-up Time

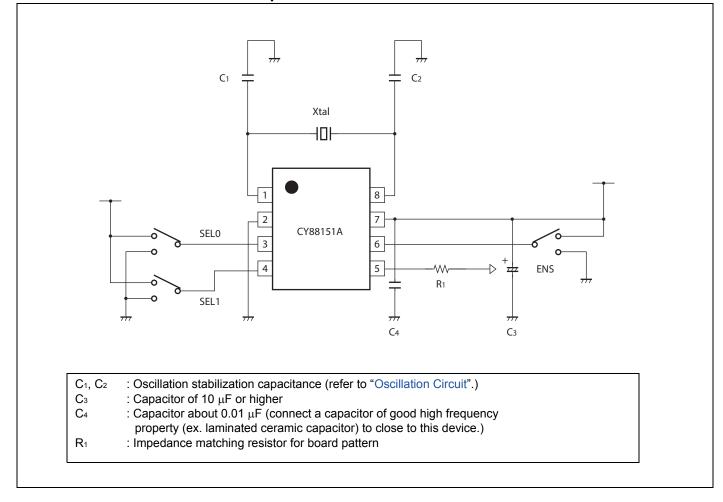

If the setting pin is fixed at the "H" or "L" level, the maximum time after the power is turned on until the set clock signal is output from CKOUT pin is (the stabilization wait time of input clock to XIN pin) + (the lock-up time " t_{LK} "). For the input clock stabilization time, check the characteristics of the resonator or oscillator used.

For modulation enable control using the ENS pin during normal operation, the set clock signal is output from CKOUT pin at most the lock-up time (t_{LK}) after the level at the ENS pin is determined.

Note : When the pin setting is changed, the CKOUT pin output clock stabilization time is required. Until the output clock signal becomes stable, the output frequency, output clock duty cycle, modulation period, and cycle-cycle jitter cannot be guaranteed. It is therefore advisable to perform processing such as cancelling a reset of the device at the succeeding stage after the lock-up time.

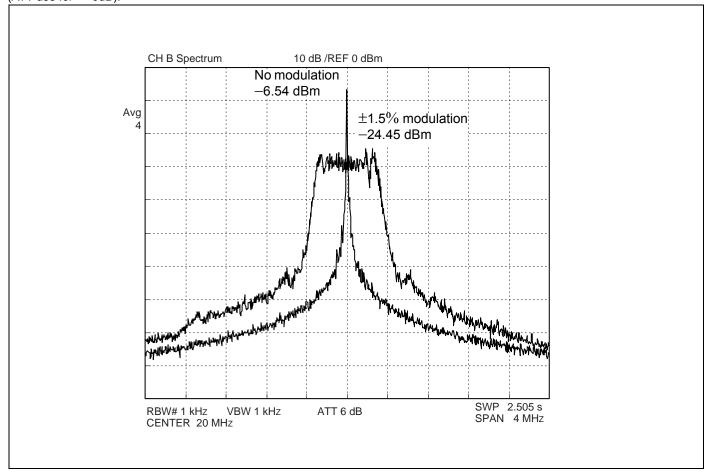

When the power down is controlled by XPD pin, the desired clock is obtained after the pin is set to H level until the maximum lockup time t_{LK} is elapsed.

17. Oscillation Circuit


The figure below shows the connection example about general resonator. The oscillation circuit has the built-in resistance (Rf). The value of capacity (C_1 and C_2) is required adjusting to the most suitable value of individual resonator. The most suitable value is different by individual resonator. Please refer to the resonator manufacturer which you use for the most suitable value.

Input the clock to XIN pin, and do not connect anything with XOUT pin if you use the external clock (you do not use the resonator).

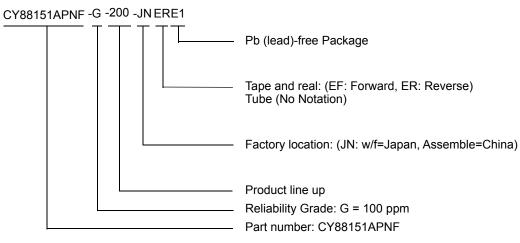
18. Interconnection Circuit Example



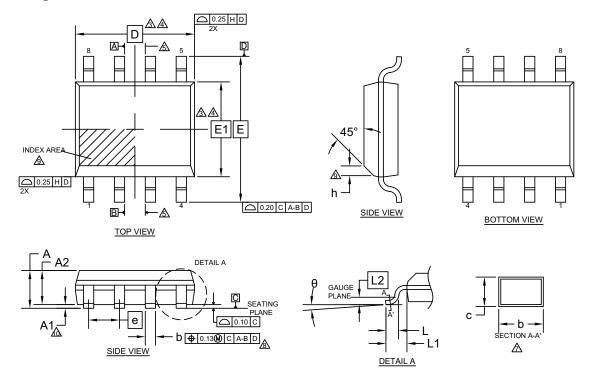
19. Spectrum Example Characteristics

The condition of the examples of the characteristic is shown as follows : Input frequency = 20 MHz (Output frequency = 20 MHz : Using CY88151A-100 (Multiply-by-1)), Power - supply voltage = 3.3 V, None load capacity, Modulation rate = \pm 1.5% (center spread).

Spectrum analyzer HP4396B is connected with CKOUT. The result of the measurement with RBW = 1 kHz (ATT use for -6dB).



20. Ordering Information


Part Number	Input Frequency Range	Multiplier Ratio	Output Frequency Range	Package	Remarks
CY88151APNF-G-100-JNE1	16.6 MHz to	Multiply- by-1	16.6 MHz to 33.4 MHz		
CY88151APNF-G-200-JNE1	33.4 MHz	Multiply- by-2	33.2 MHz to 66.8 MHz	8-pin plastic SOP (SOB008)	
CY88151APNF-G-100-JNEFE1	16.6 MHz to	Multiply- by-1	16.6 MHz to 33.4 MHz		Emboss
CY88151APNF-G-200-JNEFE1	33.4 MHz	Multiply- by-2	33.2 MHz to 66.8 MHz		taping (EF type)
CY88151APNF-G-100-JNERE1	16.6 MHz to	Multiply- by-1	16.6 MHz to 33.4 MHz		Emboss
CY88151APNF-G-200-JNERE1	33.4 MHz	Multiply- by-2	33.2 MHz to 66.8 MHz		taping (ER type)

Ordering Code Definitions

21. Package Dimension

0)////DOI	DIMENSIONS					
SYMBOL	MIN.	NOM.	MAX.			
А	_		1.75			
A1	0.05		0.25			
A2	1.30	1.40	1.50			
D	5	.05 BSC	-			
Е	6.00 BSC.					
E1	3.90 BSC					
θ	0°		8°			
с	0.15		0.25			
b	0.36	0.44	0.52			
L	0.45	0.60	0.75			
L 1	1.05 REF					
L 2	0.25 BSC					
е	1.27 BSC.					
h	0.40 BSC.					

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETER.

- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- ▲ DIMENSIONING D INCLUDE MOLD FLASH, DIMENSIONING E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.025 mm PER SIDE. D and E1 DIMENSION ARE DETERMINED AT DATUM H.
- ▲ THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONING D and E1 ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, THE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

A DATUMS A & B TO BE DETERMINED AT DATUM H.

- 6. "N" IS THE MAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
- ▲ THE DIMENSION APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm TO 0.25mm FROM THE LEAD TIP.

10 "A1" IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY EXCLUDING THE LID AND OR THERMAL ENHANCEMENT ON CAVITY DOWN PACKAGE CONFIGURATIONS.

11. JEDEC SPECIFICATION NO. REF : N/A

002-15856 Rev.**

Document History

Spansion Publication Number: DS04-29127-3E

Document Title: CY88151A Spread Spectrum Clock Generator Document Number: 002-08311				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	TAOA	06/29/2009	Initial Release
*A	5569547	TAOA	12/30/2016	Updated to Cypress Template
*В	5993569	ΤΑΟΑ	12/18/2017	Deleated EOL part number: MB88151A-101/201/400/401/500/501/800/801 Updated Package Dimensions: Updated to Cypress format. Changed the package name from FPT-8P-M02 to SOB008.
*C	6277189	ATTS	08/13/2018	Updated part number: MB88151A to CY88151A Added Ordering Code Definitions

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2007-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemify an

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.