

HL021R2BTTR Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	HL021R2BTTR-DG
Manufacturer	KYOCERA AVX
Manufacturer Product Number	HL021R2BTTR
Description	FIXED IND 1.2NH 343MA 107MOHM SM
Detailed Description	1.2 nH Unshielded Multilayer Inductor 343 mA 107m Ohm Max 0402 (1005 Metric)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
HL021R2BTTR	KYOCERA AVX
Series:	Product Status:
MLO™	Active
Туре:	Material - Core:
Multilayer	Non-Magnetic
Inductance:	Tolerance:
1.2 nH	±0.1nH
Current Rating (Amps):	Current - Saturation (Isat):
343 mA	
Shielding:	DC Resistance (DCR):
Unshielded	107mOhm Max
Q @ Freq:	Frequency - Self Resonant:
24 @ 450MHz	16.35GHz
Ratings:	Operating Temperature:
-	-55°C ~ 125°C
Inductance Frequency - Test:	Mounting Type:
450 MHz	Surface Mount
Package / Case:	Supplier Device Package:
0402 (1005 Metric)	0402 (1005 Metric)
Size / Dimension:	Height - Seated (Max):
0.039" L x 0.023" W (1.00mm x 0.58mm)	0.018" (0.45mm)

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8504.50.8000	

Multilayer Organic (MLO®) Inductors **Tight Tolerance**

The Multilayer Organic Tight Tolerance Inductor is a low profile organic based inductor that can support mobile communications, satellite applications, GPS, matching networks, and collision avoidance. The MLO® Tight Tolerance Inductor series of components are based on KYOCERA AVX patented multilayer organic technology (US patent 6,987,307). MLO® Tight Tolerance Inductors incorporate very low loss organic materials which allow for high Q and high stability over frequency. MLO® Tight Tolerance Inductors are surface mountable and are expansion matched to FR4 printed wiring boards. MLO® Tight Tolerance Inductors utilize fine line high density interconnect technology thereby allowing for tight tolerance control and high repeatability. Reliability testing is performed to JEDEC and mil standards. Finishes are available in RoHS compliant Sn.

APPLICATIONS

- Mobile communications
- Satellite Applications
- GPS
- **Collision Avoidance** .
- Wireless LAN's

FEATURES

- Tight Tolerance
- High Frequency
- · High Withstanding Voltage
- Low DC Resistance
- . Surface Mountable
- . 0402 Case Size
- **RoHS Compliant Finishes** .
- Available in Tape and Reel

SURFACE MOUNT ADVANTAGES

TR

Packaging

5000pcs

T&R

- Inherent Low Profile
- Excellent Solderability
- · Low Parasitics
- Better Heat Dissipation
- · Expansion Matched to PCB

HOW TO ORDER

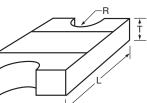
Tolerance

Expressed in nH (2 significant digits + number of zeros) for values <10nH, letter R denotes decimal point. Example: 22nH = 220 4.7nH = 4R7

Tolerance $A = \pm 0.05 nH$ $B = \pm 0.1 nH$

G = ±2%

Х


Termination Sn100

Т

DIMENSIONS

mm (inches)

QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual characteristics.

TERMINATION

RoHS compliant Sn finish.

OPERATING TEMPERATURE

-55°C to +125°C

				mm (inches)
L	W	Т	R	В
1.00±0.10 (0.040±0.004)	0.58±0.075 (0.023±0.003)	0.35±0.10 (0.014±0.004)	0.125±0.050 (0.005±0.002)	0.23±0.0508 (0.0092±0.002)

KIDERRA | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order. XXXXX

Multilayer Organic (MLO®) Inductors **Tight Tolerance**

RECOMMENDED FOOTPRINT

RECO	RECOMMENDED FOOTPRINT mm (inches)						
		Case Size	D1	D2	D3	D4	D5
l Î	T I I	0201	0.85 (0.033)	0.30 (0.012)	0.25 (0.010)	0.30 (0.012)	0.35 (0.014)
	D2	0402	1.70 (0.067)	0.60 (0.024)	0.50 (0.020)	0.60 (0.024)	0.50 (0.020)
		0603	2.30 (0.091)	0.80 (0.031)	0.70 (0.028)	0.80 (0.031)	0.75 (0.030)
	<u> </u>	0805	3.00 (0.118)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	1.25 (0.049)
D1	D3	1206	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	1.60 (0.063)
		1210	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	2.50 (0.098)
	Î I I	1808	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	2.00 (0.079)
	D4	1812	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	3.00 (0.118)
		1825	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	6.35 (0.250)
<u> </u> ♥	* L	2220	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	01.00 (0.039)	5.00 (0.197)
	← D5→	2225	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	6.35 (0.250)

Component Pad Design

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

· Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this.

• Pad overlap 0.5mm beneath component.

· Pad extension 0.5mm beyond components for relow and 1.0mm to wave soldering.

0402 ELECTRICAL SPECIFICATIONS

L (nH) 450MHz	Available Inductance Tolerance A = ±0.05nH, B = ±0.1nH, G = ±2%	Q 450MHz	Idc max (mA)	Rdc max (mΩ)	SRF min (GHz)
0.8	±0.05nH, ±0.1nH	15	450	100	7
0.9	±0.05nH, ±0.1nH	15	450	100	7
1	±0.05nH, ±0.1nH	15	420	100	7
1.1	±0.05nH, ±0.1nH	15	410	100	7
1.2	±0.05nH, ±0.1nH	15	410	110	7
1.3	±0.05nH, ±0.1nH	15	295	13	7
1.5	±0.05nH, ±0.1nH	15	295	150	7
1.6	±0.05nH, ±0.1nH	15	230	150	7
1.8	±0.05nH, ±0.1nH	15	295	160	7
2	±0.05nH, ±0.1nH	15	230	18	7
2.2	±0.05nH, ±0.1nH	15	230	200	7
2.4	±0.05nH, ±0.1nH	15	230	200	7
2.7	±0.05nH, ±0.1nH	15	230	250	7
3	±0.05nH, ±0.1nH	15	200	300	7
3.3	±0.05nH, ±0.1nH	15	200	340	7
3.6	±0.05nH, ±0.1nH	15	180	350	7
3.9	±0.05nH, ±0.1nH	15	180	400	7
4.7	±0.1nH	15	170	480	7
5.6	±0.1nH	15	150	500	7
6.8	±0.1nH	15	140	600	7
8.2	±0.1nH	15	115	800	6
10	±2%	15	105	1000	5
12	±2%	15	95	1100	4
15	±2%	15	95	1200	4
18	±2%	15	85	1500	3
22	±2%	15	75	1900	3
27	±2%	15	75	2100	3
30	±2%	15	65	2200	2
32	±2%	15	65	2200	2

Specifications based on performance of component assembled properly on printed circuit board with 500 nominal impedance.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.