

AD7542JPZ Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number	AD7542JPZ-D
Manufacturer	Analog Devic
Aanufacturer Product Number	AD7542JPZ
Description	IC DAC 12BIT
Detailed Description	12 Bit Digital

Man

DG ces Inc. A-OUT 20PLCC to Analog Converter 1 20-PLCC (9x9)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
AD7542JPZ	Analog Devices Inc.
Series:	Product Status:
	Active
DiGi-Electronics Programmable:	Number of Bits:
Not Verified	12
Number of D/A Converters:	Settling Time:
1	2µs
Output Type:	Differential Output:
Current - Unbuffered	Yes
Data Interface:	Reference Type:
Parallel	External
Voltage - Supply, Analog:	Voltage - Supply, Digital:
5V	5V
INL/DNL (LSB):	Architecture:
±1 (Max), ±1 (Max)	R-2R
Operating Temperature:	Package / Case:
-40°C ~ 85°C	20-LCC (J-Lead)
Supplier Device Package:	Mounting Type:
20-PLCC (9x9)	Surface Mount
Base Product Number:	
AD7542	

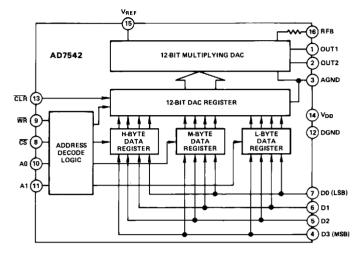
Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

CMOS P-Compatible 12-Bit DAC

AD7542

FEATURES


Resolution: 12 Bits Nonlinearity: ±1/2LSB T_{min} to T_{max} Low Gain Drift: 2ppm/°C typ, 5ppm/°C max Microprocessor Compatible Full 4-Quadrant Multiplication Fast Interface Timing Low Power Dissipation: 40mW max Low Cost Small Size: 16-pin DIP and 20-Terminal Surface Mount Package Latch Free (Protection Schottky Not Required)

GENERAL DESCRIPTION

The AD7542 is a precision 12-bit CMOS multiplying DAC designed for direct interface to 4- or 8-bit microprocessors.

The functional diagram shows the AD7542 to consist of three 4-bit data registers, a 12-bit DAC register, address decoding logic and a 12-bit CMOS multiplying DAC. Data is loaded into the data registers in three 4-bit bytes, and subsequently transferred to the 12-bit DAC register. All data loading or data transfer operations are identical to the WRITE cycle of a static RAM. A clear input allows the DAC register to be easily reset to all zeros when powering up the device.

FUNCTIONAL BLOCK DIAGRAM

The AD7542 is manufactured using an advanced thin-film on monolithic CMOS fabrication process. Multiplying capability, low power dissipation, +5V operation, small size (16-pin DIP and 20 terminal surface mount packages) and easy μ P interface make the AD7542 ideal for many instrumentation, industrial control and avionics applications.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel:
 617/329-4700

 Fax:
 617/326-8703

 Telex:
 924491

 Cable:
 ANALOG NORWOODMASS

AD7542 — **SPECIFICATIONS** ($V_{DD} = +5V$, $V_{REF} = +10V$, $V_{OUT1} = V_{OUT2} = 0V$ unless otherwise noted)

arameter	Limit At T _A = + 25°C	Limit At ¹ $T_A = -40^{\circ}C$ to +85°C	Limit At ¹ $T_A = -55^{\circ}C$ & +125^{\circ}C	Units	Conditions/Comments
ACCURACY					
Resolution	12	12	12	Bits	
Relative Accuracy ²	12	12	12	DIG	
J, A, S Versions	±1	±1	±1	LSB max	
÷ · · · · · · · · · · · · · · · · · · ·			±1/2		
K, B, T Versions	±1/2	±1/2		LSB max	
GK, GB, GT Versions	±1/2	±1/2	±1/2	LSB max	
Differential Nonlinearity ²					
J, A, S Versions	±1	±1	±1	LSB max	All grades are guaranteed monotonic
K, B, T Versions	±1	±1	±1	LSB max	T _{min} to T _{max}
GK, GB, GT Versions	±1	±1	±1	LSB max	
Gain Error ²					
J, K, A, B, S, T	±3	±4	±4	LSB max	Using internal R _{FB} only (gain error can be
GK, GB, GT	±1	±1	±2	LSB max	trimmed to zero using circuits of Figure 4 & 5)
				LOD MAX	thinked to zero using circuits of Figure (at),
Gain Temperature Coefficient				_	
∆Gain/∆Temperature	5	5	5	ppm/°C max	Typical value is 2ppm/°C
Power Supply Rejection				-	
$\Delta Gain / \Delta V_{DD}$	0.005	0.01	0.01	% per % max	V _{DD} = +4.75V to +5.25V
Output Leakage Current					50
δυτι	10	10	200	nA max	DAC Register loaded with all 0s
-	10	10	200	nA max	DAC Register loaded with all 1s
LOUT2	10	10	200	nA max	DAC Register loaded with all 1s
DYNAMIC PERFORMANCE	_	•			
Current Settling Time ³	2.0	20	2.0	110 00 0 11	To 1/21 SP OUT1 load - 1000 DAC autout
Current Setting Time	2.0	2.0	2.0	µs max	To $1/2LSB$, OUT1 load = 100 Ω . DAC output
					measured from falling edge of WR.
Multiplying Feedthrough Error ³	2.5	2.5	2.5	mV p-p max	V _{REF} = ±10V, 10kHz sine wave
REFERENCE INPUT					
Input Resistance	8/15/25	8/15/25	8/15/25	kΩ min/typ/max	
ANALOG OUTPUTS					
Output Capacitance				_	
C _{OUT1} ³	75	75	75	pF max	DAC register loaded to 0000 0000 0000
C _{OUT1}	260	260	260	pF max	DAC register loaded to 1111 1111 1111
C _{OUT2} ³	75	75	75	pF max	DAC register loaded to 1111 1111 1111
C _{OUT2} ³	260	260	260	pf max	DAC register loaded to 0000 0000 0000
		· ·		_	
LOGIC INPUTS					
VINH (Logic HIGH Voltage)	+2.4	+2.4	+2.4	V min	
VINL (Logic LOW Voltage)	+0.8	+0.8	+0.8	V max	
IIN ⁴	1	1	1	μA max	$V_{IN} = 0V \text{ or } V_{DD}$
C _{IN} (Input Capacitance) ³	8	8	8	pF max	
Input Coding		-	-	pr max	
input Coding		polar Binary or 12			
		e Figures 4 and 5).			
	Loaded int	o Data Registers in	h 4-Bit Bytes.		
WITCHING CHARACTERISTICS ⁵	(Can Ei-	1)			
	(See Figu		1.0	:_	t WDITE sules width
twr	80	120	160	ns min	twR: WRITE pulse width
^t AWH	0	10	10	ns min	t _{AWH} : Address-to-WRITE hold time
^t CWH	0	10	10	ns min	t _{CWH} : Chip select-to-WRITE hold time
^t CLR	200	200	250	ns min	t _{CLR} : Minimum CLEAR pulse width
tcws	10	20	20	ns min	t _{CWS} : Chip select-to-WRITE setup time
taws	40	40	40	ns min	tAWS: Address valid-to-WRITE setup time
t _{DS}	60	100	100	ns min	t _{DS} : Data setup time
	10	10	10	ns min	t _{DH} : Data hold time
^t DH	**	17	10		
OWER SUPPLY					
POWER SUPPLY V _{DD} (Supply Voltage) I _{DD} (Supply Current)	+5	+5	+5	v	±5% for specified performance

NOTES 'Temperature Ranges as follows: J, K, GK Versions; -40°C to +85°C A, B, GB Versions; -40°C to +85°C S, T, GT Versions; -55°C to +125°C

²See definitions on next page.
³Guaranteed but not tested.
⁴Logic inputs are MOS gates. Typical input current (+25°C) is less than lnA.
⁵Sample tested at +25°C to ensure compliance.

Specifications subject to change without notice.

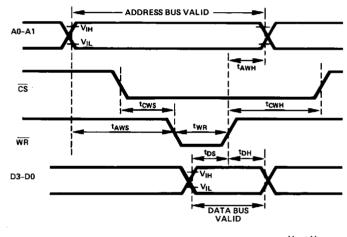
ABSOLUTE MAXIMUM RATINGS*

 $(T_A - + 25^{\circ}C \text{ unless otherwise noted})$

V_{DD} to AGND
V_{DD} to DGND
AGND to DGND
DGND to AGND
Digital Input Voltage to GND $\dots \dots \dots -0.3V$, $V_{DD} + 0.3V$
V_{OUT1} , V_{OUT2} to AGND0.3V, V_{DD} +0.3V
V_{REF} to AGND
V_{RFB} to AGND

Power Dissipation (Package)
Plastic
$To + 70^{\circ}C$
Derates above $+70^{\circ}$ C by 8.3mW/°C
Ceramic
$To + 75^{\circ}C$
Derates above $+75^{\circ}$ C by
Operating Temperature Range
Commercial (J, K, GK Versions) -40° C to $+85^{\circ}$ C
Industrial (A, B, GB Versions) $\ldots \ldots -40^{\circ}$ C to $+85^{\circ}$ C
Extended (S, T, GT Versions) $\ldots \ldots \ldots -55^{\circ}C$ to $+125^{\circ}C$
Storage Temperature $\dots \dots \dots$
Lead Temperature (Soldering, 10secs) + 300°C

*COMMENTS: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

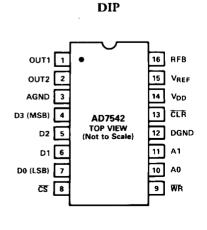

CAUTION

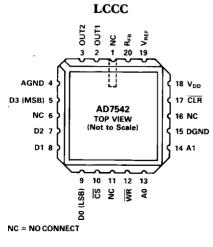
ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

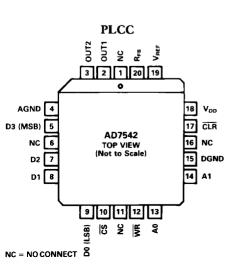
	<u> </u>		-	
Model ¹	Temperature Range	Relative Accuracy	Gain Error	Package Option ²
AD7542JN	-40°C to +85°C	±1LSB	± 3LSB	N-16
AD7542KN	- 40°C to + 85°C	± 1/2LSB	± 3LSB	N-16
AD7542GKN	-40°C to +85°C	± 1/2LSB	± 1LSB	N-16
AD7542JP	- 40°C to + 85°C	±1LSB	± 3LSB	P-20A
AD7542KP	- 40°C to + 85°C	± 1/2LSB	± 3LSB	P-20A
AD7542GKP	- 40°C to + 85°C	± 1/2LSB	± 1LSB	P-20A
AD7542AQ	- 40°C to + 85°C	±1LSB	± 3LSB	Q-16
AD7542BQ	- 40°C to + 85°C	± 1/2LSB	± 3LSB	Q-16
AD7542GBQ	-40°C to +85°C	± 1/2LSB	±1LSB	Q-16
AD7542SQ	- 55°C to + 125°C	± 1LSB	± 3LSB	Q-16
AD7542TQ	-55°C to +125°C	± 1/2LSB	± 3LSB	Q-16
AD7542GTQ	- 55°C to + 125°C	± 1/2LSB	±1LSB	Q-16
AD7542SE	- 55°C to + 125°C	± 1 LSB	± 3LSB	E-20A
AD7542TE	- 55°C to + 125°C	± 1/2LSB	± 3LSB	E-20A
AD7542GTE	- 55°C to + 125°C	± 1/2LSB	± 1LSB	E-20A

ORDERING GUIDE

NOTE: TIMING MEASUREMENT REFERENCE LEVEL IS VIH + VIL


Figure 1. AD7542 Timing Diagram


NOTES


¹To order MIL-STD-883 Class B processed parts, add /883B to part number. ²E = Leadless Ceramic Chip Carrier; N = Plastic DIP; P = Plastic Leaded Chip Carrier;

 $\mathbf{Q} = \mathbf{Cerdip}$. For outline information see Package Information section.

PIN CONFIGURATIONS

TERMINOLOGY

RELATIVE ACCURACY

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is expressed in % or ppm of full scale range or (sub) multiples of 1LSB.

DIFFERENTIAL NONLINEARITY

Differential nonlinearity is the difference between the measured change and the *ideal* 1LSB change between any two adjacent codes. A specified differential nonlinearity of \pm 1LSB max over the operating temperature range insures monotonicity.

GAIN ERROR

Gain is defined as the ratio of the DAC's Full Scale output to its reference input voltage. An *ideal* AD7542 would exhibit a gain of -4095/4096. Gain error is adjustable using external trims as shown in Figures 4 and 5.

OUTPUT LEAKAGE CURRENT

Current which appears at OUT1 with the DAC register loaded to all 0s or at OUT2 with the DAC register loaded to all 1s.

MULTIPLYING FEEDTHROUGH ERROR

AC error due to capacitive feedthrough from V_{REF} terminal to OUT1 with DAC register loaded to all 0s.

Table I. Pin Function Description (DIP Pin Numbers)

PIN	MNEMONIC	FUNCTION
1	OUT1	DAC current output bus. Normally terminated at op amp virtual ground
2	OUT2	DAC current output bus. Normally terminated at ground
3	AGND	Analog Ground
4	D3	Data Input (MSB)
5	D2	Data Input
6	D1	Data Input
7	D0	Data Input (LSB)
8	CS	Chip Select Input
9	WR	WRITE Input
10	A0	Address Bus Input
11	A1	Address Bus Input
12	DGND	Digital Ground
13	CLR	Clear Input
14	V _{DD}	+5V Supply Input
15	V _{REF}	Reference Input
16	R _{FB}	DAC Feedback Resistor

Analog Circuit Description

GENERAL CIRCUIT INFORMATION

The AD7542, a 12-bit multiplying D/A converter, consists of a highly stable thin film R-2R ladder and twelve N-channel current switches on a monolithic chip. Most applications require the addition of only an output operational amplifier and a voltage or current reference.

The simplified D/A circuit is shown in Figure 2. An inverted R-2R ladder structure is used—that is, the binarily weighted currents are switched between the OUT1 and OUT2 bus lines, thus maintaining a constant current in each ladder leg independent of the switch state.

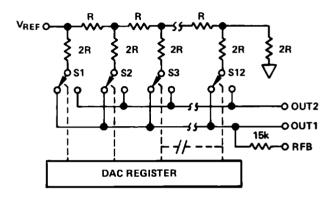


Figure 2. D/A Simplified Circuit Diagram

One of the current switches is shown in Figure 3. The input resistance at V_{REF} (Figure 2) is always equal to R_{LDR} (R_{LDR} is the R/2R ladder characteristic resistance and is equal to value "R"). Since R_{IN} at the V_{REF} pin is constant, the reference terminal can be driven by a reference voltage or a reference current, ac or dc, of positive or negative polarity. (If a current source is used, a low temperature coefficient R_{FB} is recommended to define scale factor.)

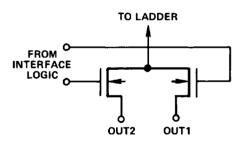


Figure 3. N-Channel Current Steering Switch

Applying the AD7542

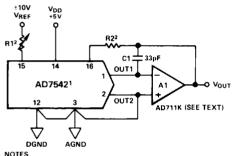

UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION)

Figure 4 shows the analog circuit connections required for unipolar binary (2-quadrant multiplication) operation. The logic inputs are omitted for clarity. With a dc reference voltage or current (positive or negative polarity) applied at V_{REF} , the circuit is a unipolar D/A converter. With an ac reference voltage or current the circuit provides 2-quadrant multiplication (digitally controlled attenuation). The input/output relationship is shown in Table II.

R1 provides full scale trim capability [i.e.—load the DAC register to 1111 1111 1111, adjust R1 for $V_{OUT} = -V_{REF}$ (4095/4096)]. Alternatively, Full Scale can be adjusted by omitting R1 and R2 and trimming the reference voltage magnitude.

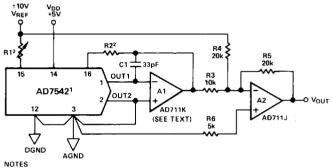
C1 phase compensation (10 to 33pF) may be required for stability when using high speed amplifiers. (C1 is used to cancel the pole formed by the DAC internal feedback resistance and output capacitance at OUT1).

Amplifier A1 should be selected or trimmed to provide $V_{OS} \le 10\%$ of the voltage resolution at V_{OUT} . Additionally, the amplifier should exhibit a bias current which is low over the temperature range of interest (bias current causes output offset at V_{OUT} equal to I_B times the DAC feedback resistance, nominally 15k Ω). The AD711K is a high-speed implanted FET-input op amp with low, factory-trimmed V_{OS} .

NOTES 1. LOGIC INPUTS OMITTED FOR CLARITY, DIP PIN NUMBERS SHOWN. 2. SEE APPLICATION HINT NO. 4.

Figure 4. Unipolar Binary Operation (2-Quadrant Multiplication)

Table II. Unipolar Binary Code Table for Circuit of Fig	ure 4
---	-------


BINARY N DAC REG MSB	UMBER IN GISTER LSB	ANALOG OUTPUT, V _{OUT}
1111 11	11 1111	$-V_{\text{REF}}\left(\frac{4095}{4096}\right)$
1000 00	00 0000	$-V_{\text{REF}}\left(\frac{2048}{4096}\right) = -1/2 V_{\text{REF}}$
0000 00	00 0001	$-V_{REF}\left(\frac{1}{4096}\right)$
0000 00	00 0000	0V

BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION)

Figure 5 and Table III illustrate the circuitry and code relationship for bipolar operation. With a dc reference (positive or negative polarity) the circuit provides offset binary operation. With an ac reference, the circuit provides full 4-quadrant multiplication.

With the DAC register loaded to 1000 0000 0000, adjust R1 for $V_{OUT} = 0V$ (alternatively, one can omit R1 and R2 and adjust the ratio of R3 to R4 for $V_{OUT} = 0V$). Full scale trimming can be accomplished by adjusting the amplitude of V_{REF} or by varying the value of R5.

As in unipolar operation, A1 must be chosen for low V_{OS} and low I_B. R3, R4 and R5 must be selected for matching and tracking. Mismatch of R3 to R4 causes both offset and Full Scale error. Mismatch of R5 to R4 or R3 causes Full Scale error. C1 phase compensation (10pF to 25pF) may be required for stability.

1. LOGIC INPUTS OMITTED FOR CLARITY, DIP PIN NUMBERS SHOWN. 2. SEE APPLICATION HINT NO. 4.

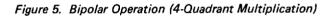


Table III. Bipolar Code Table for Offset Binary Circuit ofFigure 5

BINARY N DAC REG	UMBER IN ISTER	ANALOG OUTPUT, V _{OUT}
MSB	LSB	
1111 11	11 1111	$+V_{\text{REF}}\left(\frac{2047}{2048}\right)$
1000 00	00 0001	$+V_{\text{REF}}\left(\frac{1}{2048}\right)$
1000 00	00 0000	ov
0111 11	11 1111	$-V_{\text{REF}}\left(\frac{1}{2048}\right)$
0000 00	00 0000	$-V_{\text{REF}}\left(\frac{2048}{2048}\right)$

INTERFACE LOGIC INTERFACE LOGIC INFORMATION

The AD7542 is designed to interface as a memory-mapped output device.

A typical system configuration is shown in Figure 6. \overline{CS} is the decoded *device* address, and is derived by decoding the three higher order address bits. A0 and A1 is the AD7542 operation address, and is decoded internally in the AD7542 to point to the desired loading operation (i.e., load high byte, middle byte, low byte or DAC register). Table IV shows the AD7542 truth table.

All data loading operations are identical to the write cycle of a RAM as shown in Figure 1.

Additionally, the $\overline{\text{CLR}}$ input allows the AD7542 DAC register to be cleared asynchronously to 0000 0000 0000. When operating the AD7542 in a unipolar mode (Figure 4), a CLEAR causes the DAC output to assume 0V. In the bipolar mode (Figure 5), a CLEAR causes the DAC output to go to $-V_{\text{REF}}$.

In summary:

- 1. The AD7542 DAC register can be asynchronously cleared with the CLR input.
- 2. Each AD7542 requires 4 locations in memory.
- 3. Performing any of the four basic loading operations (i.e. load low byte data register, middle byte data register, high byte data register or 12-bit DAC register) is accomplished by executing a memory WRITE operation to the applicable address location for the required DAC operation.

A ₁	A ₀	cs	WR	CLR	AD7542 Operation		
x	x	x	x	0	Resets DAC 12-Bit Register to Code 0000 0000 0000		
х	x	1	x	1	No Operation Device Not Selected		
0	0	0	Ŧ	1	Load LOW Byte ⁵ Data Register On Edge As Shown	Load	
0	1	0	₽	1	Load MIDDLE Byte ⁵ Data Register On Edge As Shown	Applicable Data Register With Data At D ₀ - D ₃	
1	0	0	₽	1	Load HIGH Byte ⁵ Data Register On Edge As Shown		
1	1	0	ப	1	Load 12-Bit DAC Regis Data In LOW Byte, MII & HIGH Byte Data Reg	DDLE Byte	

Table IV	AD7542	Truth	Table
	, AD/072	11441	Iavic

AD7542 INTERFACE TO MC6800

A typical 6800 system configuration is shown in Figure 6. Since the AD7542 contains four registers each AD7542 is assigned four locations in memory. A0 and A1 provides the operational addresses and are decoded internally to point to the desired register. Register loading is accomplished by executing a memory WRITE instruction to one of the four addresses. Table V gives a sample loading subroutine written in re-entrant form.

Choosing an arbitrary start address of PPQQ, locations PPQQ, PPQQ+1 and PPQQ+2 select the low, middle and high byte registers respectively while address PPQQ+3 selects the 12-bit DAC register. The 12-bit data to be passed to the subroutine is stored in locations XXYY and XXYY+1. The four most significant data bits are assumed to occupy the lower half of XXYY+1.

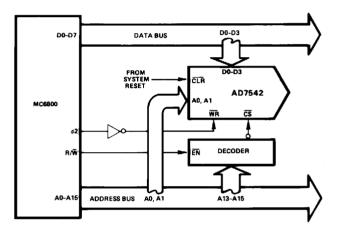


Figure 6. Interfacing the AD7542 to an MC6800 Microprocessor

Table V. Sample Routine for AD7542-6800 Interface

	JSR	WWZZ	
WWZZ	PSH A		PUSH ACC. A ONTO STACK
	TPA		
	PSH A		PUSH CCR ONTO STACK
	LDA A	XXYY	
	STA A	PPQQ	LOAD LOW BYTE
	ROR A		
	STA A	PPQQ+1	LOAD MIDDLE BYTE
	LDA A	XXYY+1	
	STA A	PPQQ+2	LOAD HIGH BYTE
	STA A	PPQQ+3	LOAD DAC REGISTER
	PUL A		
	ТАР		POP CCR FROM STACK
	PUL A		POP ACC. A FROM STACK
	RTS		RETURN TO MAIN PROGRAM

NOTES: ¹ 1 indicates logic HIGH	^s MSB → <u>XXXX</u>	<u>xxxx</u>	$\underline{XXXX} \leftarrow LSB$
² 0 indicates logic LOW	high	middle	low
³ X indicates don't care	byte	byte	byte
* 🖪 indicates LOW to HIGH transition	⁶ These control sig	n ais are lev	el triggered.

AD7542 INTERFACE TO 8085

A typical 8085 system configuration is shown in Figure 7. The AD7542 \overline{CS} input is decoded from the three high order address lines A13-A15. The 8085 \overline{WR} output is directly connected to the \overline{WR} input of the AD7542. Table VI gives a sample loading subroutine written in re-entrant form. The 12-bit data to be passed to the subroutine is stored in locations XXYY and XXYY+1. The four most significant data bits are assumed to occupy the lower half of XXYY+1. As before, arbitrary addresses PPQQ to PPQQ+3 select the low byte, middle byte, high byte and DAC registers respectively.

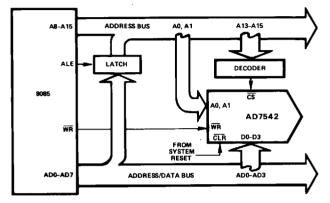


Figure 7. Interfacing the AD7542 to an 8085 Microprocessor

Table VI. Sample Routine for AD7542-8085 Interface

	CALL	7542	
7542	PUSH	PSW	PUSH REGISTER CONTENTS
	PUSH	В	ONTO STACK
	PUSH	н	
	LXI	Η, ΧΧΥΥ	
	MOV	Α, Μ	
	STA	PPQQ	LOAD LOW BYTE
	MVI	B, 04	
LOOP	RAR		
	DCR	В	
	JNZ	LOOP	
	STA	PPQQ+1	LOAD MIDDLE BYTE
	INX	н	
	MOV	A, M	
	STA	PPQQ+2	LOAD HIGH BYTE
	STA	PPQQ+3	LOAD DAC REGISTER
	POP	н	POP REGISTER CONTENTS
	POP	В	FROM STACK
	POP	PSW	
	RET		RETURN TO MAIN PROGRAM

APPLICATION HINTS

The AD7542 is a precision 12-bit multiplying DAC designed for system interface. To ensure system performance consistent with AD7542 specifications, careful attention must be given to the following points:

1. GENERAL GROUND MANAGEMENT: Voltage differences between the AD7542 AGND and DGND cause loss of accuracy (dc voltage difference between the grounds introduces gain error. AC or transient voltages between the grounds cause noise injection into the analog output). The simplest method of ensuring that voltages at AGND and DGND are equal is to tie AGND and DGND together at the AD7542. In more complex systems where the AGND-DGND intertie is on the back-plane, it is recommended that diodes be connected back-to-back between the AD7542 AGND and DGND pins (1N914 or equivalent).

- 2. OUTPUT AMPLIFIER OFFSET: CMOS DACs exhibit a code-dependent output resistance which in turn causes a code-dependent amplifier noise gain. The effect is a non-linearity term at the amplifier output which depends on V_{OS} (V_{OS} is amplifier input offset voltage). This non-linearity term adds to the R/2R nonlinearity. To maintain specified operation, it is recommended that amplifier V_{OS} be no greater than 10% of the DAC's output resolution over the temperature range of interest [output resolution = V_{REF} (2⁻ⁿ) where n is the number of bits exercised].
- 3. HIGH FREQUENCY CONSIDERATIONS: AD7542 output capacitance works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This not only reduces closed loop bandwidth, but can also cause ringing or oscillation if the spurious pole frequency is less than the amplifier's OdB crossover frequency. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor.
- 4. GAIN TEMPERATURE COEFFICIENTS: The gain temperature coefficient of the AD7542 has a maximum value of 5ppm/°C and a typical value of 2ppm/°C. This corresponds to gain shifts of 2.0LSBs and 0.82LSBs respectively over a 100°C temperature range. When trim resistors are used to adjust full-scale range as shown in Figures 4 and 5 the temperature coefficient of R1 and R2 should be taken into account. It may be shown that the additional gain temperature coefficients introduced by R1 and R2 may be approximately expressed as follows: -

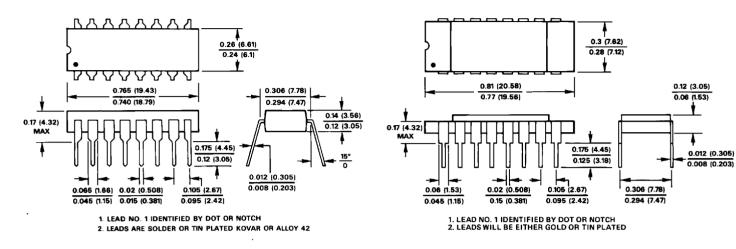
Temperature Coefficient
contribution due to R1 =
$$-\frac{R_1}{R_{IN}}$$
 ($\gamma_1 + 300$)
Temperature Coefficient
contribution due to R2 = $+\frac{R_2}{R_{IN}}$ ($\gamma_2 + 300$)

Where γ_1 and γ_2 are the temperature coefficients in ppm/°C of R1 and R2 respectively and R_{IN} is the DAC input resistance at the V_{REF} terminal (pin 2). For high quality wirewound resistors and trimming potentiometers γ is of the order of 50ppm/°C. It will be seen that if R1 and R2 are small compared with R_{IN}, their contribution to gain temperature coefficient will also be small. For the standard AD7542 gain error specification of ±3LSBs it is recommended that R1 = 50 Ω and R2 = 25 Ω . With γ = 50 these values result in an overall maximum gain error temperature coefficient of:

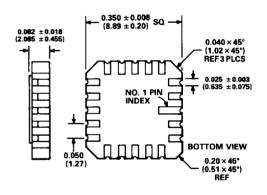
$$5 + \frac{0.025}{8} (50 + 300) = 6 \text{ppm/}^{\circ} \text{C}$$

However, if the AD7542GTD is used which has a specified gain error of ±1LSB, then with R1 = 10Ω and R2 = 5Ω the overall maximum gain temperature coefficient is increased by only 0.25ppm/°C. Where possible R1 should be a select on test fixed resistor since the resulting gain temperature coefficient will be tighter in all cases. For further gain T.C. information refer to application note, "Gain Error and Gain Temperature Coefficients of CMOS Multiplying DACs", Publication Number E630-10-6/81 available from Analog Devices.

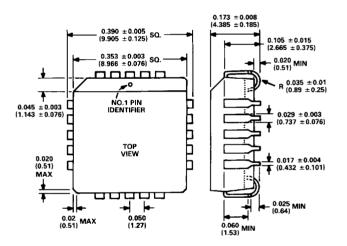
 For additional information on multiplying DACs refer to "CMOS DAC Application Guide," Publication Number G872a-15-4/86, available from Analog Devices.


MECHANICAL INFORMATION

OUTLINE DIMENSIONS


Dimensions shown in inches and (mm).

16-Pin Plastic DIP (Suffix N)


16-Pin Ceramic DIP (Suffix D)

20-Terminal Leadless Ceramic Chip Carrier (Suffix E)

20-Terminal Plastic Leaded Chip Carrier (Suffix P)

ŧ

ł

0.012 (0.305)

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

March dense March dense March dense March dense	Hand Handward Handw Handward Handward H	Har Hanner werden Har Hanner werden Har Har Har Har Har Har Har Har Har Har	• Road example

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.