

ADG453BRZ Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number ADG453BRZ-DG

Manufacturer Analog Devices Inc.

Manufacturer Product Number ADG453BRZ

Description IC SW SPST-NO/NCX4 50HM 16SOIC

Detailed Description 4 Circuit IC Switch 1:1 50hm 16-SOIC

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
ADG453BRZ	Analog Devices Inc.
Series:	Product Status:
-	Active
Switch Circuit:	Multiplexer/Demultiplexer Circuit:
SPST - NO/NC	1:1
Number of Circuits:	On-State Resistance (Max):
4	50hm
Channel-to-Channel Matching (ΔRon):	Voltage - Supply, Single (V+):
100mOhm	12V
Voltage - Supply, Dual (V±):	Switch Time (Ton, Toff) (Max):
±4.5V ~ 20V	180ns, 140ns
-3db Bandwidth:	Charge Injection:
	20pC
Channel Capacitance (CS(off), CD(off)):	Current - Leakage (IS(off)) (Max):
37pF, 37pF	500pA
Crosstalk:	Operating Temperature:
-90dB @ 1MHz	-40°C ~ 85°C (TA)
Mounting Type:	Package / Case:
Surface Mount	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package:	Base Product Number:
16-SOIC	ADG453

Environmental & Export classification

8542.39.0001

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

LC^2MOS 5 Ω R_{ON} SPST Switches

ADG451/ADG452/ADG453

FEATURES

Low on resistance (4 Ω)
On resistance flatness (0.2 Ω)
44 V supply maximum ratings ± 15 V analog signal range
Fully specified at ± 5 V, 12 V, ± 15 V
Ultralow power dissipation (18 μ W)
ESD 2 kV
Continuous current (100 mA)
Fast switching times t_{ON} 70 ns t_{OFF} 60 ns
TTL-/CMOS-compatible
Pin-compatible upgrade for ADG411/ADG412/ADG413

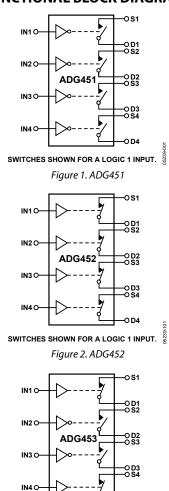
and ADG431/ADG432/ADG433

APPLICATIONS

Relay replacement
Audio and video switching
Automatic test equipment
Precision data acquisition
Battery-powered systems
Sample-and-hold systems
Communication systems
PBX, PABX systems
Avionics

GENERAL DESCRIPTION

The ADG451/ADG452/ADG453 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed and low on resistance.


The on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed, coupled with high signal bandwidth, makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.

The ADG451/ADG452/ADG453 contain four independent, single-pole/single-throw (SPST) switches. The ADG451 and ADG452 differ only in that the digital control logic is inverted. The ADG451 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG452.

Rev. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 1 INPUT.

Figure 3. ADG453

The ADG453 has two switches with digital control logic similar to that of the ADG451, while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when on, and each has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG453 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features
Applications1
General Description1
Functional Block Diagrams1
Revision History2
Product Highlights
Specifications
15 V Dual Supply4
12 V Single Supply5
5 V Dual Supply6
REVISION HISTORY
10/06—Rev. B to Rev. C
Changes to Table 49
Changes to Ordering Guide
12/04—Rev. A to Rev. B
Updated FormatUniversal
Changes to Specifications Section
Changes to Absolute Maximum Ratings Section 8
Changes to Pin Configuration and Function
Descriptions Section
Updated Outline Dimensions
Changes to Ordering Guide 17

Absolute Maximum Ratings	/
ESD Caution	7
Pin Configuration and Function Descriptions	8
Typical Performance Characteristics	9
Terminology	11
Applications	12
Test Circuits	13
Outline Dimensions	15
Ordering Guide	16

2/98—Rev. 0 to Rev. A

10/97—Revision 0: Initial Version

PRODUCT HIGHLIGHTS

- 1. Low R_{ON} (5 Ω maximum).
- 2. Ultralow Power Dissipation.
- 3. Extended Signal Range. The ADG451/ADG452/ADG453 are fabricated on an enhanced LC^2MOS process, giving an increased signal range that fully extends to the supply rails.
- Break-Before-Make Switching.
 This prevents channel shorting when the switches are configured as a multiplexer (ADG453 only.)

- 5. Single-Supply Operation.
 - For applications in which the analog signal is unipolar, the ADG451/ADG452/ADG453 can be operated from a single rail power supply. The parts are fully specified with a single 12 V power supply and remain functional with single supplies as low as 5.0 V.
- 6. Dual-Supply Operation.

For applications where the analog signal is bipolar, the ADG451/ADG452/ADG453 can be operated from a dual power supply ranging from $\pm 4.5~\rm V$ to $\pm 20~\rm V$.

SPECIFICATIONS

15 V DUAL SUPPLY

 V_{DD} = 15 V, V_{SS} = -15 V, V_{L} = 5 V, GND = 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 1.

		Version ¹			
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		$V_{\text{SS}} to V_{\text{DD}}$	V		
On Resistance (R _{ON})	4		Ω typ	$V_D = -10 \text{ V to } +10 \text{ V, } I_S = -10 \text{ mA}$	
	5	7	Ω max		
On Resistance Match Between Channels (ΔR_{ON})	0.1		Ω typ	$V_D = \pm 10 \text{ V}, I_S = -10 \text{ mA}$	
	0.5	0.5	Ω max		
On Resistance Flatness (R _{FLAT(ON)})	0.2		Ω typ	$V_D = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}, I_S = -10 \text{ mA}$	
	0.5	0.5	Ω max		
LEAKAGE CURRENTS ²					
Source Off Leakage, Is (OFF)	±0.02		nA typ	$V_D = \pm 10 \text{ V}, V_S = \pm 10 \text{ V}; \text{ see Figure 17}$	
	±0.5	±2.5	nA max		
Drain Off Leakage, I _D (OFF)	±0.02		nA typ	$V_D = \pm 10 \text{ V}, V_S = \pm 10 \text{ V}; \text{ see Figure 17}$	
	±0.5	±2.5	nA max		
Channel On Leakage, ID, Is (ON)	±0.04		nA typ	$V_D = V_S = \pm 10 \text{ V}$; see Figure 18	
	±1	±5	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH} ; all others = 2.4 V or 0.8 V, respective	
		±0.5	μA max		
DYNAMIC CHARACTERISTICS ³					
ton	70		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = \pm 10 \text{V}$; see Figure 19	
	180	220	ns max		
toff	60		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = \pm 10 \text{V}$; see Figure 19	
	140	180	ns max		
Break-Before-Make Time Delay, t _D (ADG453 Only)	15		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = +10 V$; see Figure 20	
	5	5	ns min		
Charge Injection	20		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF}; \text{ see Figure 21}$	
	30		pC max		
Off Isolation	65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22	
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23	
C _s (OFF)	37		pF typ	f = 1 MHz	
C _D (OFF)	37		pF typ	f = 1 MHz	
C_D , C_S (ON)	140		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}; \text{ digital inputs} = 0 \text{ V or } 5 \text{ V}$	
I_{DD}	0.0001		μA typ		
	0.5	5	μA max		
I _{SS}	0.0001		μA typ		
	0.5	5	μA max		
IL	0.0001		μA typ		
	0.5	5	μA max		
I_{GND^3}	0.0001		μA typ		
	0.5	5	μA max		

 $^{^{1}}$ Temperature range for B version is -40°C to $+85^{\circ}\text{C}.$

 $^{^{2}}$ T_{MAX} = 70°C.

 $^{^{\}rm 3}$ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V, V_{SS} = 0 V, V_L = 5 V, GND = 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 2.

Parameter ANALOG SWITCH Analog Signal Range OV to V _{co} OV to			B Version ¹		
Analog Signal Range On Resistance (Row) 6 8 10 01	Parameter	25°C T _{MIN} to T _{MAX}		Unit	Test Conditions/Comments
On Resistance (Row) On Resistance Match Between Channels (ΔRow) On Resistance Match Between Channels (ΔRow) On Resistance Flatness (RelATION) On Resistance Match Between Channels (ΔRow) On Resistance Match Between Channels (Λρογ (Not you be viole)) On A typ On Out Ov Out Ov, Vs = -10 mA On Resistance Match Between Channels (ΔRow) On Resistance Match Between Channels (ΔRow) On Row On Resistance Match Between Channels (ΔRow) On Out On Out Out Out On Out	ANALOG SWITCH				
On Resistance Match Between Channels (ΔRow) 8 10 Ω max Otyp Op = 10 V, Is = −10 mA On Resistance Flatness (RrLariow) 1.0 1.0 Ω typ Op = 0 V, 5 V, Is = −10 mA LEAKAGE CURRENTS ^{2, 3} Source Off Leakage, Is (OFF) ±0.02	Analog Signal Range		$0VtoV_{DD}$	V	
On Resistance Match Between Channels (ΔRow) 0.1 Ω typ Ω typ Vo = 10 V, Is = −10 mA On Resistance Flatness (ReLATIONN) 1.0 1.0 Ω typ Vo = 0 V, 5 V, Is = −10 mA LEAKAGE CURRENTS²-3 To Surce Off Leakage, Is (OFF) ±0.02 ±0.5 ±2.5 nA max nA typ nA max Vo = 0 V, 10 V, Vs = 0 V, 10 V; see Figure 17 Drain Off Leakage, Is (OFF) ±0.02 ±0.5 ±2.5 nA max nA typ nA max Vo = 0 V, 10 V, Vs = 0 V, 10 V; see Figure 17 Channel On Leakage, Is, Is (ON) ±0.04 ±1 ±5 nA max vA typ nA max Vo = Vs = 0 V, 10 V; see Figure 18 DIGITAL INPUTS 1 ±5 nA max Va min nA max Va min nA max Input Current, Isin, or Isin 0.8 V max Va max Input Current, Isin, or Isin 0.005 ±0.5 µA max Vine Typ Vine Typ DYNAMIC CHARACTERISTICS⁴ 0.005 ms max ns typ Ri = 300 Ω, Ci = 35 pF, Vs = 8 V; see Figure 19 100	On Resistance (RoN)	6		Ω typ	$V_D = 0 \text{ V to } +10 \text{ V}, I_S = -10 \text{ mA}$
On Resistance Flatness (Relation) 0.5 0.5 Ω max Ω typ V ₀ = 0 V, 5 V, I ₅ = −10 mA LEAKAGE CURRENTS ^{2,3} Source Off Leakage, I ₅ (OFF) ±0.02 ±0.5 ±2.5 nA max nA typ ±0.5 ±2.5 nA max nA typ ±10.5 nA max		8	10	Ω max	
Do no Resistance Flatness (R _{FLATICONI}) 1.0 1.0 Ω typ V _D = 0 V, 5 V, Is = -10 mA	On Resistance Match Between Channels (ΔR _{ON})	0.1		Ω typ	$V_D = 10 \text{ V, } I_S = -10 \text{ mA}$
LEAKAGE CURRENTS 2-3 Source Off Leakage, Is (OFF) ±0.02 ±0.5 ±2.5 nA max nA typ to 5 ±0.5 ±2.5 nA max nA typ to 5 ±0.5 ±2.5 nA max nA typ to 6 to 7 to		0.5	0.5	Ω max	
Source Off Leakage, Is (OFF)		1.0	1.0	Ω typ	$V_D = 0 \text{ V}, 5 \text{ V}, I_S = -10 \text{ mA}$
Drain Off Leakage, I₀ (OFF) ±0.5 ±2.5 nA max nA typ vb = 0 V, 10 V, Vs = 0 V, 10 V; see Figure 17 Channel On Leakage, I₀, I₅ (ON) ±0.5 ±2.5 nA max nA typ nA max V₀ = V₅ = 0 V, 10 V; see Figure 18 DIGITAL INPUTS Input High Voltage, VℕH Input Low Voltage, VℕL Input Current, IℕL or INH 2.4 V min V max V max Input Current, IℕL or INH 0.005 µA typ µA max DYNAMIC CHARACTERISTICS⁴ 100 ns typ ns max ns typ ns max toFF 80 ns typ ns max ns max Break-Before-Make Time Delay, t₀ (ADG453 Only) 15 ns min pC typ vsee Figure 20 Charge Injection 10 10 ns min pC typ Vsee Figure 20 Channel-to-Channel Crosstalk −90 dB typ R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; see Figure 23 C₃ (OFF) 60 pF typ f = 1 MHz C₀, C₀ (ON) 100 pF typ f = 1 MHz POWER REQUIREMENTS Volume Vmin mA typ nA max Volume Vmin max na	LEAKAGE CURRENTS ^{2, 3}				
Drain Off Leakage, Io (OFF) ±0.02 ±0.5 ±2.5 ±2.5 nA max nA typ ±0.5 ±2.5 nA max nA typ ±0.04 ±1 ±5 nA max Vo = 0 V, 10 V; see Figure 17 DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current, I _{INL} or I _{INH} 0.005 ±0.5 μA max 2.4 V min 0.8 V max μA typ μA max V _{IN} = V _{INL} or V _{INH} V _{IN} or V _{INH} DYNAMIC CHARACTERISTICS ⁴ to N 100 see Figure 19 ns typ 160 see Figure 19 R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 Break-Before-Make Time Delay, to (ADG453 Only) 15 see Figure 20 ns max ns typ 160 see Figure 20 R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 21 Channel-to-Channel Crosstalk	Source Off Leakage, Is (OFF)	±0.02		nA typ	$V_D = 0 \text{ V}$, 10 V, $V_S = 0 \text{ V}$, 10 V; see Figure 17
Channel On Leakage, Io, Is (ON) ±0.5 ±2.5 ±2.5 ±0.04 ±0.04 ±0.04 ±10.04 ±10.04 ±10.04 ±10 ±5 ±0.04 ±10.04 ±10 ±0.04 ±10.04		±0.5	±2.5	nA max	
Channel On Leakage, I₀, I₃ (ON) ±0.04 ±1 ±5 ±5 nA max nA typ nA max V₀ = V₃ = 0 V, 10 V; see Figure 18 DIGITAL INPUTS 2.4 V min Input High Voltage, ViNH Input Low Voltage, ViNL Input Current, IniL or IniNH 0.005 ±0.5 µA typ µA max V max ViN = ViNL or ViNH ViN = ViNL or ViNH Park ViN = ViNL or ViNH Park ViN = 0.005 µA max DYNAMIC CHARACTERISTICS⁴ 100 ns max ns typ RL = 300 Ω, CL = 35 pF, V₃ = 8 V; see Figure 19 100 ns max ns typ Reak-Before-Make Time Delay, t₀ (ADG453 Only) 15 ns typ ns max ns typ RL = 300 Ω, CL = 35 pF, V₃ = 8 V; see Figure 19 Charge Injection Channel-to-Channel Crosstalk C₃ (OFF) C₀ (OFF) C₀ (S₀ (OFF) C₀ (S₀ (OFF)) 10 10 ns min pC typ dB typ RL = 50 Ω, CL = 1.0 nF; see Figure 23 fe 1 MHz	Drain Off Leakage, I _D (OFF)	±0.02		nA typ	$V_D = 0 \text{ V}$, 10 V, $V_S = 0 \text{ V}$, 10 V; see Figure 17
DIGITAL INPUTS		±0.5	±2.5	nA max	
DIGITAL INPUTS	Channel On Leakage, ID, IS (ON)	±0.04		nA typ	$V_D = V_S = 0 V$, 10 V; see Figure 18
Input High Voltage, V _{INL} 2.4 V min N max V max		±1	±5	nA max	
Input Low Voltage, V _{INL} 0.8 V max μA typ μA typ μA max V max μA typ μA max V max μA typ μA max V max μA typ μA max DYNAMIC CHARACTERISTICS ⁴ 100 ns typ 220 260 ns max R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 toFF 80 ns typ 160 R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 Break-Before-Make Time Delay, t _D (ADG453 Only) 15 ns typ	DIGITAL INPUTS				
Input Current, Inp	Input High Voltage, V _{INH}		2.4	V min	
	Input Low Voltage, V _{INL}		0.8	V max	
DYNAMIC CHARACTERISTICS ⁴ 100 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 t _{OFF} 80 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 Break-Before-Make Time Delay, t _D (ADG453 Only) 15 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 Charge Injection 10 10 ns min Charge Injection 10 pC typ V _S = 6 V, R _S = 0 Ω, C _L = 1.0 nF; see Figure 21 Channel-to-Channel Crosstalk -90 dB typ R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; see Figure 23 C _S (OFF) 60 pF typ f = 1 MHz C _D (OFF) 60 pF typ f = 1 MHz C _D , C _S (ON) 100 pF typ f = 1 MHz POWER REQUIREMENTS V _{DD} = 13.2 V; digital inputs = 0 V or 5 V	Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
toN 100 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 toFF 80 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 Break-Before-Make Time Delay, t _D (ADG453 Only) 15 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 Charge Injection 10 10 ns min Channel-to-Channel Crosstalk -90 dB typ V _S = 6 V, R _S = 0 Ω, C _L = 1.0 nF; see Figure 21 C _S (OFF) 60 pF typ f = 1 MHz C _D (OFF) 60 pF typ f = 1 MHz C _D , C _S (ON) 100 pF typ f = 1 MHz POWER REQUIREMENTS I _{DD} 0.0001 μA typ V _{DD} = 13.2 V; digital inputs = 0 V or 5 V			±0.5	μA max	
$t_{OFF} \\ t_{OFF} \\ t_{OD} \\ t_{OFF} \\ t_{OD} \\ t_{OOS} \\ t_{OOS$	DYNAMIC CHARACTERISTICS ⁴				
toff 80 ns typ R _L = 300 Ω, C _L = 35 pF, V _S = 8 V; see Figure 19 Break-Before-Make Time Delay, t _D (ADG453 Only) 15 ns typ R _L = 300 Ω, C _L = 35 pF, V _{S1} = V _{S2} = 8 V; see Figure 20 Charge Injection 10 10 ns min Vs = 6 V, R _S = 0 Ω, C _L = 1.0 nF; see Figure 21 Channel-to-Channel Crosstalk -90 dB typ R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; see Figure 23 C _S (OFF) 60 pF typ f = 1 MHz C _D (OFF) 60 pF typ f = 1 MHz C _D (C _S (ON) 100 pF typ f = 1 MHz V _{DD} = 13.2 V; digital inputs = 0 V or 5 V U _{DD} = 13.2 V; digital inputs = 0 V or 5 V	ton	100		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$; see Figure 19
Break-Before-Make Time Delay, t_D (ADG453 Only) 15 160 200 18 max 15 18 ns typ 19 ns min 10 charge Injection 10 pC typ 10 dB typ 10 pF typ		220	260	ns max	
Break-Before-Make Time Delay, t_D (ADG453 Only) 15 ns typ R _L = 300 Ω , C_L = 35 pF, V_{S1} = V_{S2} = 8 V; see Figure 20 10 10 ns min Charge Injection Channel-to-Channel Crosstalk -90 dB typ R _L = 50 Ω , C_L = 1.0 nF; see Figure 21 R _L = 50 Ω , C_L = 5 pF, f = 1 MHz; see Figure 23 C _S (OFF) C _D (OFF) C _D (OFF) C _D , C_S (ON) 100 pF typ f = 1 MHz F typ f = 1 MHz V _{DD} = 13.2 V; digital inputs = 0 V or 5 V	toff	80		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$; see Figure 19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		160	200	ns max	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Break-Before-Make Time Delay, t _□ (ADG453 Only)	15		ns typ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10	10	ns min	J. J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Charge Injection			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF}; \text{ see Figure 21}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-90			=
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cs (OFF)	60			
$ \begin{array}{c cccc} C_D, C_S (ON) & 100 & pF typ & f = 1 MHz \\ \hline POWER REQUIREMENTS & & V_{DD} = 13.2 V; digital inputs = 0 V or 5 V \\ \hline I_{DD} & 0.0001 & \mu A typ & \end{array} $		60			f = 1 MHz
POWER REQUIREMENTS $I_{DD} \hspace{1cm} V_{DD} = 13.2 \text{ V; digital inputs} = 0 \text{ V or 5 V}$ $\mu A \text{ typ}$					
I _{DD} 0.0001 μA typ				1 /1	
		0.0001		μΑ tvp	
0.5 5 uA max		0.5	5	μA max	
I_L 0.0001 $\mu A typ$	l ₁		-		
$0.5 5 \mu A max V_L = 5.5 V$	-		5		$V_L = 5.5 \text{ V}$
I_{GND}^4 0.0001 μA typ	$I_{\sf GND}^4$			-	
$0.5 5 \mu A max V_L = 5.5 V$			5		$V_L = 5.5 V$

 $^{^{1}}$ Temperature range for B version is -40° C to $+85^{\circ}$ C.

 $^{^{2}} T_{MAX} = 70^{\circ} C$

³ Tested with dual supplies.

⁴ Guaranteed by design, not subject to production test.

5 V DUAL SUPPLY

 V_{DD} = +5 V, V_{SS} = -5 V, V_L = +5 V, GND = 0 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.

Table 3.

	B Version ¹			Test Conditions/Comments	
Parameter	25°C T _{MIN} to T _{MAX}		Unit		
ANALOG SWITCH					
Analog Signal Range		$V_{\text{SS}}toV_{\text{DD}}$	V		
On Resistance (R _{ON})	7		Ωtyp	$V_D = -3.5 \text{ V to } +3.5 \text{ V, } I_S = -10 \text{ mA}$	
	12	15	Ω max		
On Resistance Match Between Channels (ΔRon)	0.3		Ω typ	$V_D = 3.5 \text{ V, I}_S = -10 \text{ mA}$	
	0.5	0.5	Ω max		
LEAKAGE CURRENTS ^{2, 3}					
Source Off Leakage, Is (OFF)	±0.02		nA typ	$V_D = \pm 4.5$, $V_S = \pm 4.5$; see Figure 17	
	±0.5	±2.5	nA max		
Drain Off Leakage, I _D (OFF)	±0.02		nA typ	$V_D = 0 \text{ V}, 5 \text{ V}, V_S = 0 \text{ V}, 5 \text{ V}; \text{ see Figure 17}$	
	±0.5	±2.5	nA max		
Channel On Leakage, ID, IS (ON)	±0.04		nA typ	$V_D = V_S = 0 \text{ V}, 5 \text{ V}; \text{ see Figure 18}$	
	±1	±5	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.5	μA max		
DYNAMIC CHARACTERISTICS ⁴					
ton	160		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 3 \text{V}$; see Figure 19	
	220	300	ns max		
toff	60		ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 3 \text{V}$; see Figure 19	
	140	180	ns max		
Break-Before-Make Time Delay, t _D (ADG453 Only)	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 20	
	5	5	ns min		
Charge Injection	10		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF}; \text{ see Figure 21}$	
Off Isolation	65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 22	
Channel-to-Channel Crosstalk	-76		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 23	
C _s (OFF)	48		pF typ	f = 1 MHz	
C _D (OFF)	48		pF typ	f = 1 MHz	
C_D , C_S (ON)	148		pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$; digital inputs = 0 V or 5 V	
I _{DD}	0.0001		μA typ		
	0.5	5	μA max		
Iss	0.0001		μA typ		
	0.5	5	μA max		
I _L	0.0001		μA typ		
	0.5	5	μA max	$V_L = 5.5 \text{ V}$	
I _{GND} ⁴	0.0001		μA typ		
	0.5	5	μA max	$V_L = 5.5 \text{ V}$	

 $^{^1}$ Temperature range for B version is -40°C to +85°C. 2 T_{MAX} = 70°C. 3 Tested with dual supplies. 4 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4.

Parameters	Ratings
V _{DD} to V _{SS}	44 V
V _{DD} to GND	-0.3 V to +32 V
Vss to GND	+0.3 V to -32 V
V ₁ to GND	-0.3 V to V _{DD} + 0.3 V
Analog, Digital Inputs ¹	$V_{SS} - 2V$ to $V_{DD} + 2V$ or 30 mA, whichever occurs first
Continuous Current, S or D	100 mA
Peak Current, S or D (pulsed at 1 ms, 10% duty cycle maximum)	300 mA
Operating Temperature Range	
Industrial (B Version)	−40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Plastic DIP Package, Power Dissipation	470 mW
θ _{JA} Thermal Impedance	117°C/W
Lead Temperature, Soldering (10 sec)	260°C
SOIC Package, Power Dissipation	600 mW
θ _{JA} Thermal Impedance	77°C/W
TSSOP Package, Power Dissipation	450 mW
θ _{JA} Thermal Impedance	115°C/W
θ _{JC} Thermal Impedance	35°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215℃
Infrared (15 sec)	220°C
ESD	2 kV

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

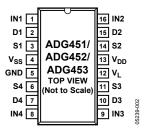


Figure 4. Pin Configuration

Table 5. Pin Function Descriptions

	1 WOLD OF 1 IN 1 WILLIAM 2 COVER COME				
Pin No.	Mnemonic	Description			
1	IN1	Logic Control Input.			
2	D1	Drain Terminal. Can be an input or an output.			
3	S1	Source Terminal. Can be an input or an output.			
4	Vss	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to GND.			
5	GND	Ground (0 V) Reference.			
6	S4	Source Terminal. Can be an input or an output.			
7	D4	Drain Terminal. Can be an input or an output.			
8	IN4	Logic Control Input.			
9	IN3	Logic Control Input.			
10	D3	Drain Terminal. Can be an input or an output.			
11	S3	Source Terminal. Can be an input or an output.			
12	VL	Logic Power Supply (5 V).			
13	V_{DD}	Most Positive Power Supply Potential.			
14	S2	Source Terminal. Can be an input or an output.			
15	D2	Drain Terminal. Can be an input or an output.			
16	IN2	Logic Control Input.			

Table 6. Truth Table (ADG451/ADG452)

ADG451 In	ADG452 In	Switch Condition
0	1	On
_1	0	Off

Table 7. Truth Table (ADG453)

Logic	Switch 1, Switch 4	Switch 2, Switch 3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

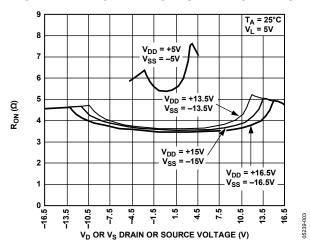


Figure 5. On Resistance as a Function of V_D (V_S) for Various Dual Supplies

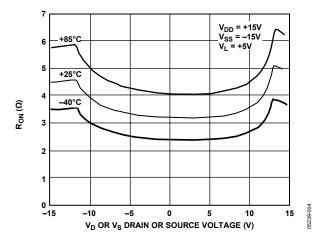


Figure 6. On Resistance as a Function of V_D (V_S) for Different Temperatures with Dual Supplies

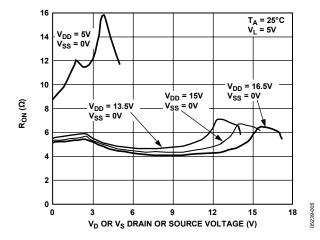


Figure 7. On Resistance as a Function of V_D (V_S) for Various Single Supplies

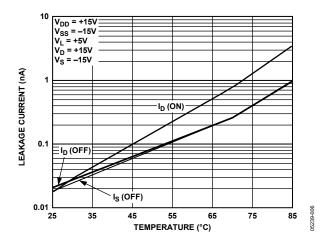


Figure 8. Leakage Currents as a Function of Temperature

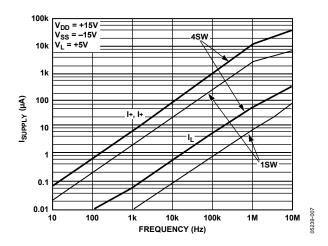


Figure 9. Supply Current vs. Input Switching Frequency

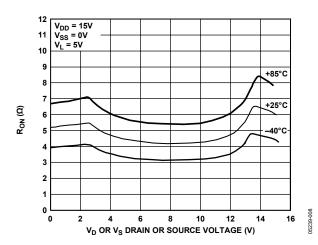


Figure 10. On Resistance as a Function of V_D (V_S) for Different Temperatures with Single Supplies

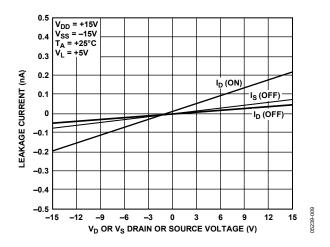


Figure 11. Leakage Currents as a Function of V_D (V_S)

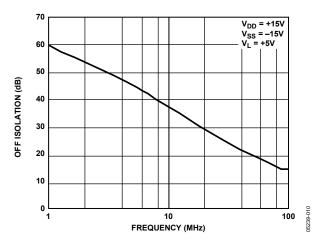


Figure 12. Off Isolation vs. Frequency

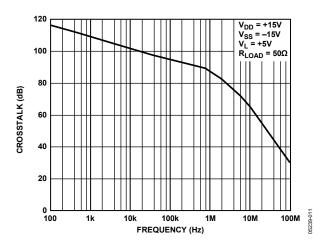


Figure 13. Crosstalk vs. Frequency

Figure 14. Frequency Response with Switch On

TERMINOLOGY

Ron

Ohmic resistance between D and S.

ΔR_{ON}

On resistance match between any two channels, that is, $R_{\rm ON}$ maximum minus $R_{\rm ON}$ minimum.

$\mathbf{R}_{\text{FLAT(ON)}}$

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (OFF)

Source leakage current with the switch off.

I_D (OFF)

Drain leakage current with the switch off.

ID, Is (ON)

Channel leakage current with the switch on.

$V_D(V_S)$

Analog voltage on Terminal D and Terminal S.

Cs (OFF)

Off switch source capacitance.

C_D (OFF)

Off switch drain capacitance.

C_D (ON), C_S (ON)

On switch capacitance.

ton

Delay between applying the digital control input and the output switching on. See Figure 19.

tore

Delay between applying the digital control input and the output switching off.

t_r

Off time or on time measured between the 90% points of both switches, when switching from one address state to another. See Figure 20.

Crosstalk

A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

APPLICATIONS

Figure 15 illustrates a precise, fast, sample-and-hold circuit. An AD845 is used as the input buffer, and the output operational amplifier is an AD711. During track mode, SW1 is closed, and the output, V_{OUT} , follows the input signal, V_{IN} . In hold mode, SW1 is opened, and the signal is held by the hold capacitor, C_{H} .

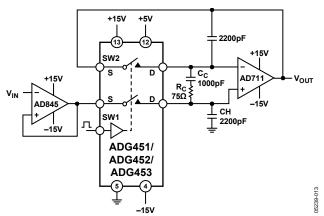


Figure 15. Fast, Accurate Sample-and-Hold Circuit

Due to switch and capacitor leakage, the voltage on the hold capacitor decreases with time. The ADG451/ADG452/ADG453 minimize this droop due to their low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 30 $\mu V/\mu s.$

A second switch, SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Because both switches are at the same potential, they have a differential effect on the op amp, AD711, which minimizes charge injection effects. Pedestal error is also reduced by the compensation network, $R_{\rm C}$ and $C_{\rm C}$. This compensation network reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ± 10 V input range. Both the acquisition and settling times are 850 ns.

TEST CIRCUITS

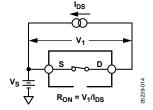


Figure 16. On Resistance

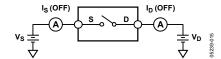


Figure 17. Off Leakage

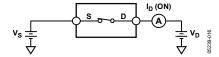


Figure 18. On Leakage

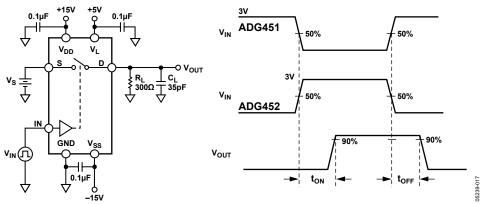


Figure 19. Switching Times

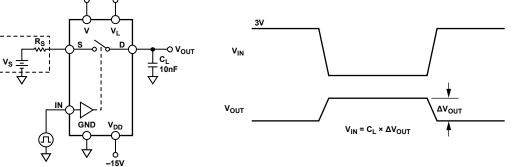


Figure 21. Charge Injection

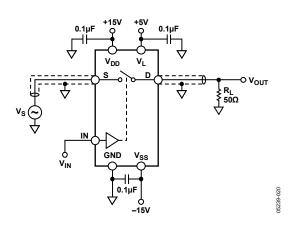


Figure 22. Off Isolation

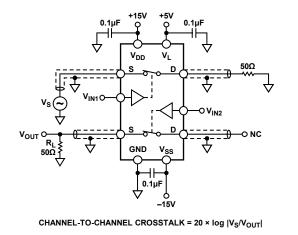
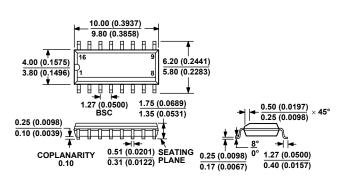



Figure 23. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AC

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 24. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16)

Dimensions shown in millimeters and (inches)

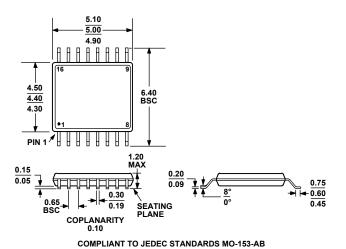


Figure 25. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

0.800 (20.32) 0.790 (20.07) 0.780 (19.81) 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.060 (1.52) MAX 0.195 (4.95) 0.210 0.130 (3.30) 0.115 (2.92) 0.015 0.150 (3.81) (0.38) MIN 0.015 (0.38) GAUGE 0.130 (3.30) PLANE 0.014 (0.36) 0.115 (2.92) SEATING 0.010 (0.25) 0.008 (0.20) 0.022 (0.56) . 0.005 (0.13) MIN 0.430 (10.92) MAX 0.018 (0.46) 0.014 (0.36) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14)

COMPLIANT TO JEDEC STANDARDS MS-001-AB

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 26. 16-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
(N-16)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG451BN	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG451BNZ ¹	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG451BR	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BR-REEL	−40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BR-REEL7	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BRZ ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BRZ-REEL ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BRZ-REEL7 ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG451BRUZ ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG451BRUZ- REEL ¹	−40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG451BRUZ- REEL71	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG451BCHIPS		DIE	
ADG452BN	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG452BNZ ¹	−40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG452BR	−40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BR-REEL	−40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BR-REEL7	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BRZ ¹	−40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BRZ-REEL ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BRZ-REEL7 ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG452BRUZ ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG452BRUZ-REEL ¹	−40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG452BRUZ-REEL7 ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG453BN	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG453BNZ ¹	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG453BR	−40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BR-REEL	−40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BR-REEL7	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BRZ ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BRZ-REEL ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BRZ-REEL7 ¹	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG453BRUZ ¹	−40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG453BRUZ-REEL ¹	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG453BRUZ-REEL7 ¹	−40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

¹ Z = Pb-free part.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com