

LM108AH/883 Datasheet

DiGi Electronics Part Number

Manufacturer Product Number

Manufacturer

Description

Detailed Description

LM108AH/883-DG

Analog Devices Inc.

LM108AH/883

OP AMPS

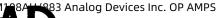
General Purpose Amplifier 1 Circuit Push-Pull TO-9 9

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.



Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
LM108AH/883	Analog Devices Inc.
Series:	Product Status:
	Active
Amplifier Type:	Number of Circuits:
General Purpose	1
Output Type:	Slew Rate:
Push-Pull	
Current - Input Bias:	Voltage - Input Offset:
500 pA	700 μV
Current - Supply:	Voltage - Supply Span (Min):
300μΑ	4 V
Voltage - Supply Span (Max):	Operating Temperature:
36 V	-55°C ~ 125°C
Mounting Type:	Package / Case:
Through Hole	TO-99-8 Metal Can
Supplier Device Package:	
TO-99	

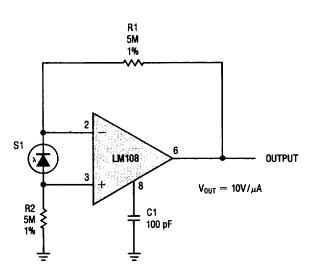
Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.33.0001	

Operational Amplifiers

FEATURES

- Guaranteed 200pA max. input offset current
- Guaranteed 2nA max. input bias current
- **Guaranteed** 600μA max. supply current
- Guaranteed 0.5mV max. offset voltage
- Guaranteed 5µV/°C max. drift
- Wide supply voltage range: ± 2V to ± 18V

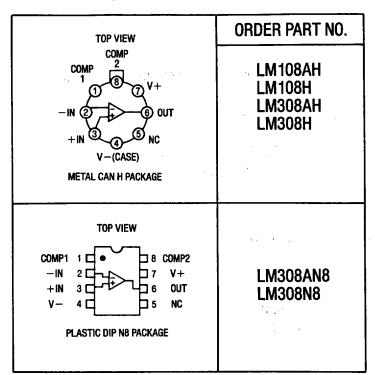

APPLICATIONS

- Integrators
- Transducer amplifiers
- Analog memories
- Light meters

DESCRIPTION

The LM108 series of precision operational amplifiers are particularly well-suited for high source impedance applications requiring low offset and bias currents as well as low power dissipation. Unlike FET input amplifiers, the offset and bias currents of the LM108 do not change significantly with temperature variations. Advanced design, processing and testing techniques make Linear's LM108 a superior choice over previous devices.

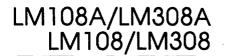
A photodiode sensor application is shown below. For applications requiring higher performance, see the LT1008, and LT1012.


Amplifier For Photodiode Sensor

Input Currents

ABSOLUTE MAXIMUM RATINGS PACKAGE/ORDER INFORMATION

Supply Voltage
LM108A/LM108 ±20V
LM308A/LM308 ± 18V
Differential Input Current (Note 1) ± 10mA
Input Voltage (Note 2) \pm 15V
Output Short Circuit Duration Indefinite
Operating Temperature Range
LM108A/LM10855°C to 125°C
LM308A/LM308 0°C to 70°C
Storage Temperature Range
All Devices
Lead Temperature (Soldering, 10 sec.) 300°C



and the second second

ELECTRICAL CHARACTERISTICS $\pm 5V \le V_s \le \pm 20V$ and $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	LM108A Typ	MAX	MIN	LM108 Typ	MAX	UNITS
V _{os}	Input Offset Voltage	$T_A = 25^{\circ}C$	•		0.3	0.5 1.0		0.7	2.0 3.0	mV mV
ΔV _{0S}	Average Temperature Coefficient of Input Offset Voltage		•		1.0	5.0		3.0	15	µV/°C
los	Input Offset Current	$T_A = 25^{\circ}C$	•		0.05	0.2 0.4		0.05	0.2 0.4	nA nA
∆l _{0S} ∆Temp	Average Temperature Coefficient of Input Offset Current		•		0.5	2.5		0.5	2.5	pA/°C
IB	Input Bias Current	$T_A = 25^{\circ}C$	•		0.5	2.0 3.0		0.5	2.0 3.0	nA nA
Avol	Large Signal Voltage Gain	$\begin{array}{l} T_{A}=25^{\circ}\text{C},V_{S}\pm15\text{V},\\ V_{OUT}=\pm10\text{V},R_{L}\geq10\text{k}\Omega \end{array}$	•	80 40	300		50 25	300	- - -	V/mV V/mV
CMRR	Common Mode Rejection Ratio		•	96	110		85	100		dB
PSRR	Power Supply Rejection Ratio		•	96	110		80	96		dB
	Input Voltage Range	$V_{\rm S} = \pm 15V$	•	± 13.5			± 13.5			· v
Vout	Output Voltage Swing	$V_{\rm S} = \pm 15 V, R_{\rm L} = 10 k\Omega$	•	± 13	± 14		± 13	± 14		V
R _{IN}	Input Resistance	$T_A = 25^{\circ}C$ (Note 3)		30	70		30	70		MΩ
ls	Supply Current	$T_{A} = 25^{\circ}C$ $T_{A} = 125^{\circ}C$			0.3 0.15	0.6 0.4		0.3 0.15	0.6 0.4	Am Am

ELECTRICAL CHARACTERISTICS $\pm 5V \le V_s \pm 15V$ and $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	LM308A Typ	MAX	MIN	LM308 Typ	MAX	UNITS
V _{os}	Input Offset Voltage	$T_A = 25^{\circ}C$	•		0.3	0.5 0.73		2.0	7.5 10	mV mV
ΔV _{os} ΔTemp	Average Temperature Coefficient of Input Offset Voltage				2.0	5.0		6.0	30	 V/°Cµ
l _{os}	Input Offset Current	$T_A = 25^{\circ}C$	•	1	0.2	1.0 1.5		0.2	1.0 1.5	nA nA
∆l _{os} ∆Temp	Average Temperature Coefficient of Input Offset Current				2.0	10		2.0	10	pA/°C
l _B	Input Bias Current	$T_A = 25^{\circ}C$	•	1	1.5	7.0 10		1.5	7.0 10	nA nA
Avol	Large Signal Voltage Gain	$\begin{array}{l} T_{A}=25^{\circ}\text{C}\text{, }V_{S}\pm15\text{V}\text{,}\\ V_{OUT}=\pm10\text{V}\text{, }R_{L}\geq10k\Omega \end{array}$	•	80 60	300	<u></u>	25 15	300		V/mV V/mV
CMRR	Common Mode Rejection Ratio		•	96	110	*****	80	100		dB
PSRR	Power Supply Rejection Ratio		•	96	110		80	96		dB
	Input Voltage Range	$V_{\rm S} = \pm 15V$	•	± 14			± 14			v
Vout	Output Voltage Swing	$V_{\rm S} = \pm 15 V R_{\rm L} = 10 k\Omega$	•		± 14	-	± 13	± 14		v
RIN	Input Resistance	$T_{A} = 25^{\circ}C \text{ (Note 3)}$		10	40		10	40		MΩ
ls	Supply Current	$T_A = 25^{\circ}C$			0.3	0.8	1	0.3	0.8	mA

The ${\ensuremath{\bullet}}$ denotes the specifications which apply over the full operating temperature range.

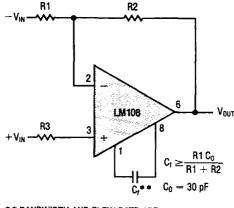
For MIL-STD components, please refer to LTC 883 data sheet for test listing and parameters.

Note 1: Differential input voltages greater than 1V will cause excessive current to flow through the input protection diodes unless current limiting resistance is used.

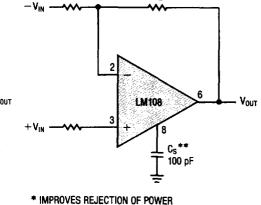
Note 2: For supply voltages less than \pm 15V, the maximum input voltage is equal to the supply voltage.

Note 3: Guaranteed by design.

TYPICAL APPLICATIONS

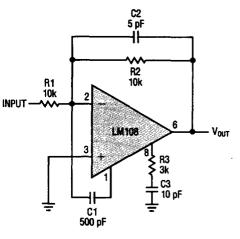

Standard Compensation Circuit

COMPENSATION CIRCUITS

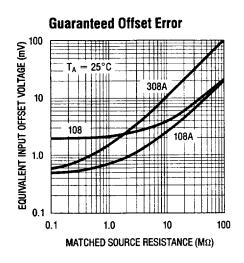

Alternate* Frequency Compensation

R2

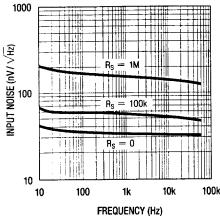
R1

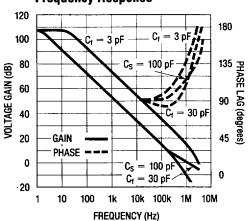


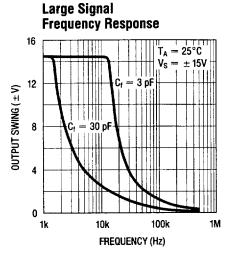
** BANDWIDTH AND SLEW RATE ARE PROPORTIONAL TO 1/C₁



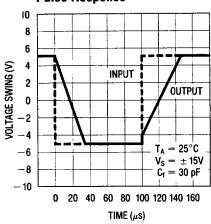
- * IMPROVES REJECTION OF POWER SUPPLY NOISE BY A FACTOR OF TEN.
- ** BANDWIDTH AND SLEW RATE ARE PROPORTIONAL TO 1/Cs

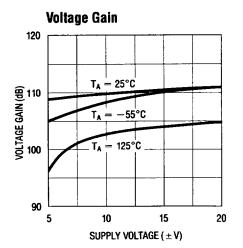

TYPICAL PERFORMANCE CHARACTERISTICS

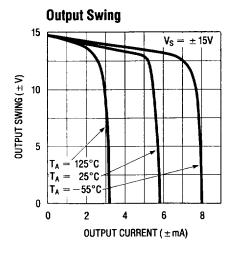


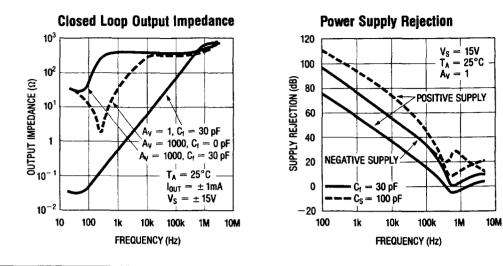

MATCHED SOURCE RESISTANCE (MΩ)

Input Noise Voltage

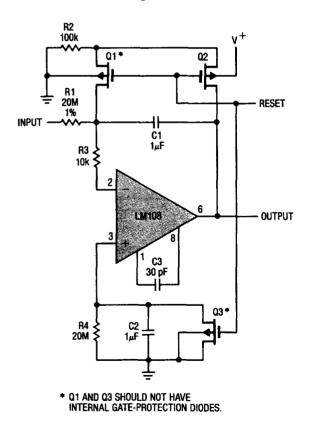



Open Loop Frequency Response





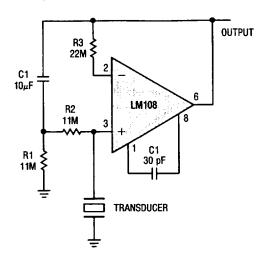
Supply Current 600 500 SUPPLY CURRENT (µA) $T_A = -55^{\circ}C$ 400 $T_A = 25^{\circ}C$ 300 $T_A = 125^{\circ}C$ 200 100 0 5 10 15 20 SUPPLY VOLTAGE (± V)



TYPICAL PERFORMANCE CHARACTERISTICS

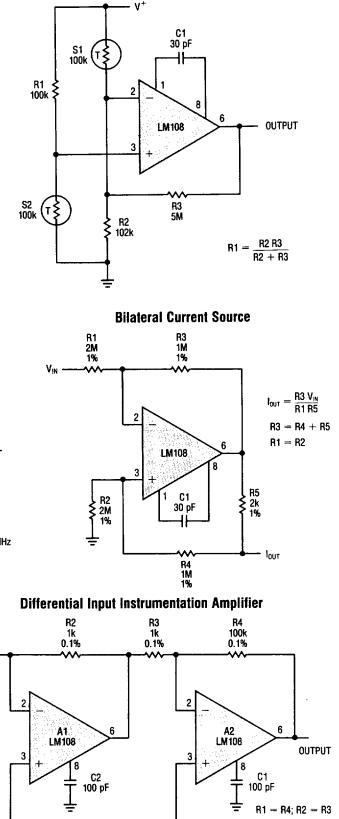
TYPICAL APPLICATIONS

Low Drift Integrator With Reset

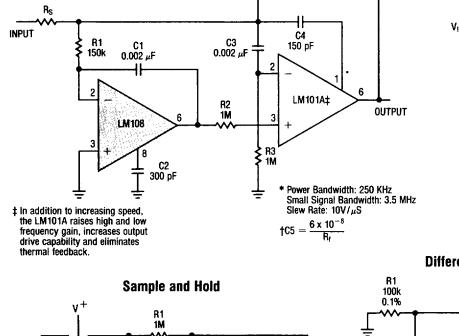


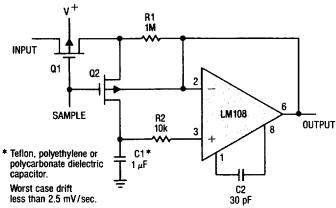
TYPICAL APPLICATIONS

Amplifier For Piezoelectric Transducers



C5† ╢


R


Amplifier For Bridge Transducers

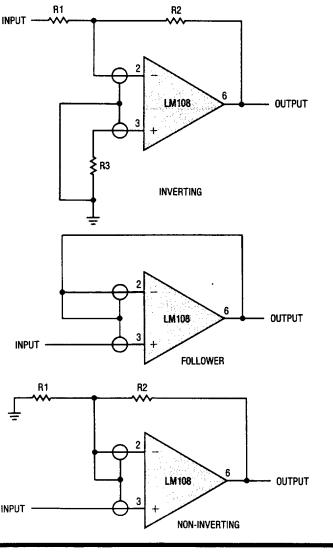
INPUTS

+

 $A_v = 1 + \frac{R1}{}$

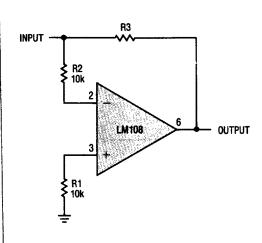
R2

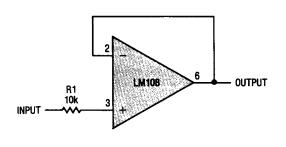
2-308


APPLICATIONS INFORMATION

Input guarding

Input guarding is used to reduce surface leakage. PN Current is limited by R2 even when input is connected Guarding both sides of the board is required. Bulk leakage reduction is less and depends on the guard ring width.

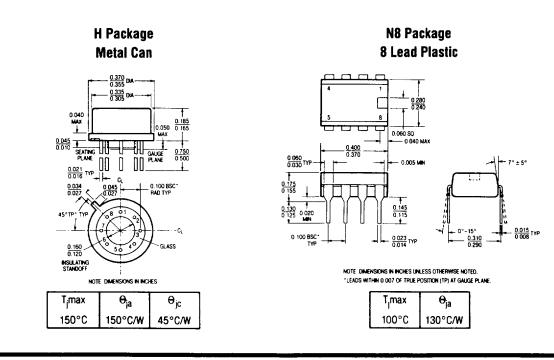

The guard ring is connected to a low impedance point at same potential as the sensitive input leads. Connections for various op amp configurations are shown below.


INTAR

PN Input protection

to a voltage source outside the common mode range. If one supply reverses, current is controlled by R1. These resistors do not affect normal operation.

PN The input resistor controls the current when the input exceeds the supply voltages, when the power for the op amp is turned off, or when the output is shorted.



Offset Voltage Test Circuit[†] **R1** 50k* + 15V 2 R2 LM108 100Ω* R3 * RESISTORS MUST HAVE LOW THERMOELECTRIC - 15V 50k POTENTIAL $A_{\rm V} = 1000$ [†] THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION WITH SUPPLY VOLTAGES EQUAL T0 \pm 20V, R1 = R3 = 10k, R2 = 200 Ω , Ay = 100.

SCHEMATIC DIAGRAM

PACKAGE DESCRIPTION

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	ENVIRONMENTAL MANAGEMENT SYSTEM CERTIFICATE DIG ELECTRONCS HK LIMITED		
ILLEBRE 24 40 UND COMPARENT STATA CONTRACT LEARD CBJ/T 19001-2016 Idt ISO9001-2015 Idt Weiter Anterior Comparent	Autoreau in a construction and a construction of the construction	Audersite internet control control and	$\label{eq:constraint} \begin{array}{c} \lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda$
Marcal	Market M Market Market Mark	Here was a subscription of the subscription of	the state of

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.