

MAX4613CUE Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MAX4613CUE-DG

Manufacturer Analog Devices Inc./Maxim Integrated

Manufacturer Product Number MAX4613CUE

Description IC SW SPST-NO/NCX4 700HM 16TSSOP

Detailed Description 4 Circuit IC Switch 1:1 700hm 16-TSSOP

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MAX4613CUE	Analog Devices Inc./Maxim Integrated
Series:	Product Status:
	Obsolete
Switch Circuit:	Multiplexer/Demultiplexer Circuit:
SPST - NO/NC	1:1
Number of Circuits:	On-State Resistance (Max):
4	700hm
Channel-to-Channel Matching (ΔRon):	Voltage - Supply, Single (V+):
40hm (Max)	4.5V ~ 40V
Voltage - Supply, Dual (V±):	Switch Time (Ton, Toff) (Max):
±4.5V ~ 20V	250ns, 120ns
-3db Bandwidth:	Charge Injection:
	5pC
Channel Capacitance (CS(off), CD(off)):	Current - Leakage (IS(off)) (Max):
4pF, 4pF	500pA
Crosstalk:	Operating Temperature:
-100dB @ 1MHz	0°C ~ 70°C (TA)
Mounting Type:	Package / Case:
Surface Mount	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package:	Base Product Number:
16-TSSOP	MAX4613

Environmental & Export classification

8542.39.0001

RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSHS.	

19-1362; Rev 3; 6/07

General Description

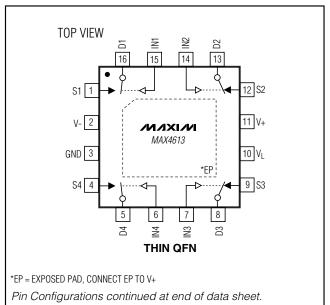
The MAX4613 quad analog switch features on-resistance matching (4Ω max) between switches and guarantees on-resistance flatness over the signal range (9 Ω max). This low on-resistance switch conducts equally well in either direction. It guarantees low charge injection (10pC max), low power consumption (35µW max), and an electrostatic discharge (ESD) tolerance of 2000V minimum per Method 3015.7. The new design offers lower off-leakage current over temperature (less than 5nA at +85°C).

The MAX4613 quad, single-pole/single-throw (SPST) analog switch has two normally closed switches and two normally open switches. Switching times are less than 250ns for ton and less than 70ns for toff. Operation is from a single +4.5V to +40V supply or bipolar ±4.5V to ±20V supplies.

Applications

Sample-and-Hold Circuits Test Equipment Heads-Up Displays Guidance and Control Systems Military Radios

Communication Systems Battery-Operated Systems


PBX, PABX

Audio Signal Routing Modems/Faxes

Features

- ♦ Pin Compatible with Industry-Standard DG213
- **♦** Guaranteed Ron Match Between Channels (4 Ω max)
- ♦ Guaranteed RFLAT(ON) Over Signal Range (9 Ω max)
- ♦ Guaranteed Charge Injection (10pC max)
- **♦ Low Off-Leakage Current Over Temperature** (<5nA at +85°C)
- ♦ Withstands 2000V min ESD, per Method 3015.7
- ♦ Low RDS(ON) (85 Ω max)
- ♦ Single-Supply Operation +4.5V to +40V Bipolar-Supply Operation ±4.5V to ±20V
- ♦ Low Power Consumption (35µW max)
- Rail-to-Rail Signal Handling
- **♦ TTL/CMOS-Logic Compatible**

Pin Configurations/ Functional Diagrams/TruthTable

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4613CPE	0°C to +70°C	16 Plastic DIP
MAX4613CSE	0°C to +70°C	16 Narrow SO
MAX4613CEE	0°C to +70°C	16 QSOP
MAX4613CUE	0°C to +70°C	16 TSSOP**
MAX4613CC/D	0°C to +70°C	Dice*
MAX4613ETE	-40°C to +85°C	16 TQFN-EP*** (5mm x 5mm)
MAX4613EPE	-40°C to +85°C	16 Plastic DIP
MAX4613ESE	-40°C to +85°C	16 Narrow SO
MAX4613EEE	-40°C to +85°C	16 QSOP
MAX4613EUE	-40°C to +85°C	16 TSSOP**

^{*}Contact factory for dice specifications.

^{**}Contact factory for availability.

^{***}EP = Exposed Pad

ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to GND
V++44V
V44V
V+ to V+44V
V _L (GND - 0.3V) to (V+ + 0.3V)
Digital Inputs V_S V_D (Note 1)(V 2V) to (V+ + 2V)
or 30mA (whichever occurs first)
Continuous Current (any terminal)30mA
Peak Current, S_ or D_
(pulsed at 1ms, 10% duty cycle max)100mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
Plastic DIP (derate 10.53mW/°C above +70°C)842n	ηW
Narrow SO (derate 8.70mW/°C above +70°C)696n	nW
QSOP (derate 8.3mW/°C above +70°C)667n	
Thin QFN (derate 33.3mW/°C above +70°C)2667n	nW
TSSOP (derate 6.7mW/°C above +70°C)457n	nW
Operating Temperature Ranges	
MAX4613C0°C to +70)°C
MAX4613E40°C to +85	i°C
Storage Temperature Range65°C to +165	
Lead Temperature (soldering, 10sec)+300)°C

Note 1: Signals on S_, D_, or IN_ exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V+ = 15V, V- = -15V, VL = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP (Note 2)	MAX	UNITS
SWITCH	•						
Analog Signal Range	Vanalog	(Note 3)		-15		15	V
Drain-Source On-Resistance	Pro(ON)	$V_D = \pm 10V$,	T _A = +25°C		55	70	Ω
Diam-Source On-Nesistance	R _{DS(ON)}	$I_S = 1mA$	$T_A = T_{MIN}$ to T_{MAX}			85	52
On-Resistance Match	A Proyecti	$V_D = \pm 10V$,	T _A = +25°C			4	Ω
Between Channels (Note 4)	$\Delta R_{DS(ON)}$	Is = 1mA	TA = TMIN to TMAX			5	52
On Registeres Flatness (Note 4)	D=, .=(0.1)	$V_D = \pm 5V$,	T _A = +25°C			9	Ω
On-Resistance Flatness (Note 4)	n-LAI(ON)	$I_S = 1mA$	$T_A = T_{MIN}$ to T_{MAX}			15	\$2
Source Leakage Current	1	$V_D = \pm 14V$,	T _A = +25°C	-0.50	0.01	0.50	Λ
(Note 5)	IS(OFF)	$V_S = \mp 14V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	nA
Drain-Off Leakage Current	In (OSS)	$V_D = \pm 14V$,	T _A = +25°C	-0.50	0.01	0.50	nA
(Note 5)	ID(OFF)	V _S = ∓14V	TA = TMIN to TMAX	-5		5	
Drain-On Leakage Current	I _{D(ON)}	$V_D = \pm 14V$,	T _A = +25°C	-0.50	0.08	0.50	A
(Note 5)	Is(ON)	$V_S = \pm 14V$	TA = TMIN to TMAX	-10		10	nA
INPUT							
Input Current with Input Voltage High	linh	V _{IN} = 2.4V, all others = 0	1.8V	-0.5	-0.00001	0.5	μΑ
Input Current with Input Voltage Low	linl	V _{IN} = 0.8V, all others = 2	.4V	-0.5	-0.00001	0.5	μA
SUPPLY						-	
Power-Supply Range	V+, V-			±4.5		±20.0	V
Positivo Supply Current	L	All channels on or off,	T _A = +25°C	-1	0.001	1	
rosilive supply Gulletti	1+	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μA
Negative Supply Current	esistance Flatness (Note 4) $P_{FLAT(ON)} = 100 - 100$	^					
rvegative Supply Current	-	VIN = 0 or 5V	TA = TMIN to TMAX	-5		5	μA

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

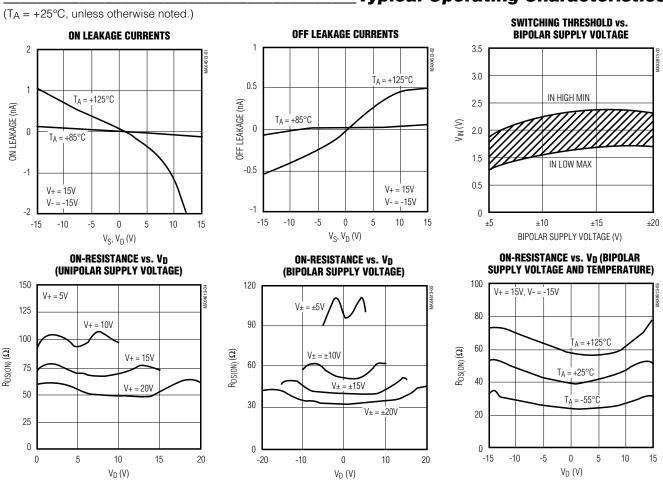
 $(V+ = 15V, V- = -15V, V_L = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDI	TIONS	MIN	TYP (Note 2)	MAX	UNITS
Logio Supply Current	lı.	All channels on or off,	T _A = +25°C	-1	0.001	1	
Logic Supply Current	IL.	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μA
Ground Current	lovio	All channels on or off,	T _A = +25°C	-1	-0.0001	1	μΑ
Ground Current	IGND	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μΑ
DYNAMIC		•					
Turn-On Time (Note 3)	ton	$V_S = \pm 10V$, Figure 2	T _A = +25°C		150	250	ns
Turn-Off Time (Note 3)	toff	$V_S = \pm 10V$, Figure 2	T _A = +25°C		90	120	ns
Break-Before-Make Time Delay (Note 3)	tD	Figure 3	T _A = +25°C	5	20		ns
Charge Injection (Note 3)	Q	C _L = 1nF, V _{GEN} = 0, R _{GEN} = 0, Figure 4	T _A = +25°C		5	10	рС
Off-Isolation Rejection Ratio (Note 6)	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 5	T _A = +25°C		60		dB
Crosstalk (Note 7)		$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$, Figure 6	T _A = +25°C		100		dB
Source-Off Capacitance	Cs(off)	f = 1MHz, Figure 7	T _A = +25°C		4		pF
Drain-Off Capacitance	C _D (OFF)	f = 1MHz, Figure 7	T _A = +25°C		4		рF
Source-On Capacitance	C _{S(ON)}	f = 1MHz, Figure 8	T _A = +25°C		16		pF
Drain-On Capacitance	C _{D(ON)}	f = 1MHz, Figure 8	T _A = +25°C		16		pF

ELECTRICAL CHARACTERISTICS—Single Supply

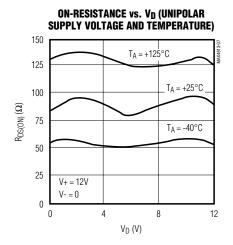
 $(V+ = 12V, V- = 0V, V_L = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

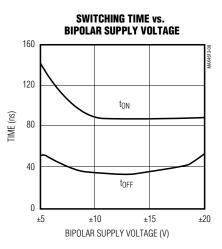
Analog Signal Range VANALOG Drain-Source RDS(ON) VL = 5V; VD = 3V, 8V; On-Resistance Is = 1mA	ONS	MIN	TYP (Note 2)	MAX	UNITS			
SWITCH								
Analog Signal Range	VANALOG			0		12	V	
Drain-Source	RDS(ON) V+, V- I+	$V_L = 5V; V_D = 3V, 8V;$	T _A = +25°C		100	160	Ω	
On-Resistance		$I_S = 1mA$	TA = TMIN to TMAX			200	1 52	
SUPPLY	•							
Power-Supply Range	V+, V-			4.5		40	V	
Power-Supply Current	L	All channels on or off,	T _A = +25°C	-1	0.001	1		
Fower-Supply Current	1+	VIN = 0 or 5V	TA = TMIN to TMAX	-5		5	μA	
Nagativa Cupply Current		All channels on or off,	T _A = +25°C	-1	-0.0001	1		
Negative Supply Current	-	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μA	
Logio Cupalu Current	1.	All channels on or off,	T _A = +25°C	-1	0.001	1		
Logic Supply Current	'L	$V_{IN} = 0 \text{ or } 5V$	$T_A = T_{MIN}$ to T_{MAX}	-5		5	μA	
Ground Current	lava	All channels on or off,	T _A = +25°C	-1	-0.0001	1		
Ground Current	IGND	VIN = 0 or 5V	TA = TMIN to TMAX	-5		5	- μΑ	

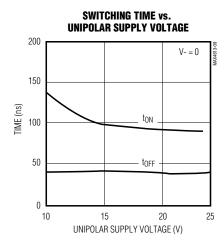

ELECTRICAL CHARACTERISTICS—Single Supply (continued)

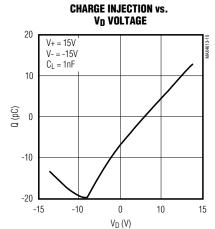
(V+ = 12V, V- = 0, VL = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.)

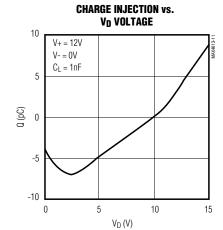
PARAMETER	SYMBOL	CONDITION	S	MIN	TYP (Note 2)	MAX	UNITS
DYNAMIC							
Turn-On Time (Note 3)	ton	V _S = 8V, Figure 2	T _A = +25°C		300	400	ns
Turn-Off Time (Note 3)	toff	V _S = 8V, Figure 2	T _A = +25°C		60	200	ns
Charge Injection (Note 3)	Q	$C_L = 1nF$, $V_{GEN} = 0$, $R_{GEN} = 0$, Figure 4	T _A = +25°C		5	10	рС


- **Note 2:** Typical values are for **design aid only,** are not guaranteed and are not subject to production testing. The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- **Note 4:** On-resistance match between channels and flatness are guaranteed only with bipolar-supply operation. Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured at the extremes of the specified analog signal range.
- Note 5: Leakage parameters Is(OFF), ID(OFF), ID(ON), and Is(ON) are 100% tested at the maximum rated hot temperature and guaranteed at +25°C.
- Note 6: Off-Isolation Rejection Ratio = 20log (VD/Vs).
- Note 7: Between any two switches.


Typical Operating Characteristics




Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

MIXIM

Pin Description

PI	N	NAME	FUNCTION
DIP/SO/TSSOP	THIN QFN	INAIVIE	FUNCTION
1, 8, 9, 16	6, 7, 14, 15	IN1-IN4	Logic Control Input
2, 7, 10, 15	5, 8, 13, 16	D1-D4	Analog-Switch Drain Output
3, 6, 11, 14	1, 4, 9, 12	S1-S4	Analog-Switch Source Output
4	2	V-	Negative-Supply Voltage Input
5	3	GND	Ground
12	10	٧L	Logic-Supply Voltage Input
13	11	V+	Positive-Supply Voltage Input—Connected to Substrate
_	EP	PAD	Exposed Pad. Connect PAD to V+.

Applications Information

General Operation

- 1) Switches are open when power is off.
- 2) IN_, D_, and S_ should not exceed V+ or V-, even with the power off.
- 3) Switch leakage is from each analog switch terminal to V+ or V-, not to other switch terminals.

Operation with Supply Voltages Other than ±15V

Using supply voltages less than $\pm 15V$ will reduce the analog signal range. The MAX4613 operates with $\pm 4.5V$ to $\pm 20V$ bipolar supplies or with a $\pm 4.5V$ to $\pm 40V$ single supply; connect V- to GND when operating with a single supply. Also, all device types can operate with unbalanced supplies such as $\pm 24V$ and $\pm 5V$. V_L must be connected to $\pm 5V$ to be TTL compatible, or to V+ for CMOS-logic level inputs. The *Typical Operating Characteristics* graphs show typical on-resistance with $\pm 20V$, $\pm 15V$, $\pm 10V$, and $\pm 5V$ supplies. (Switching times increase by a factor of two or more for operation at $\pm 5V$.)

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by V_L, V-, and logic inputs. If power-supply sequencing is not possible, add two small, external signal diodes in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to 1V below V+ and 1V above V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between V+ and V-should not exceed +44V.

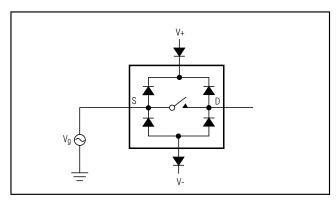


Figure 1. Overvoltage Protection Using External Blocking Diodes

Timing Diagrams/Test Circuits

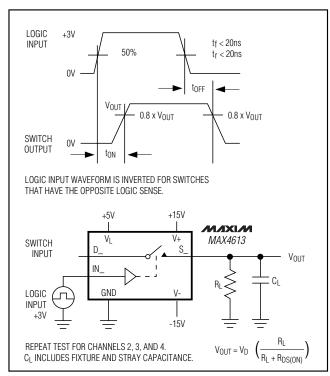


Figure 2. Switching Time

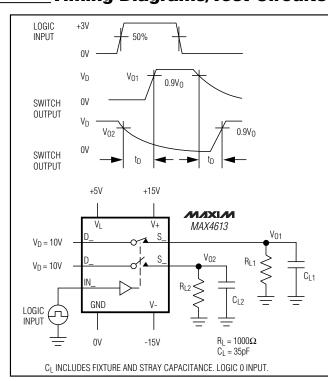


Figure 3. Break-Before-Make Test Circuit

Revision History

Pages changed at Rev 3: 1, 9, 10

Timing Diagrams/Test Circuits (continued)

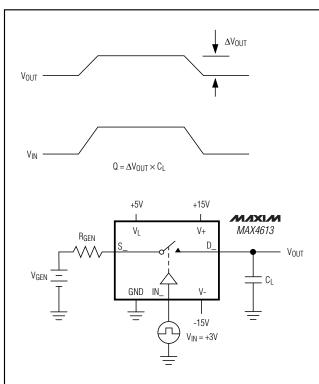


Figure 4. Charge Injection

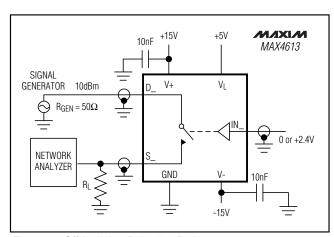


Figure 5. Off-Isolation Rejection Ratio

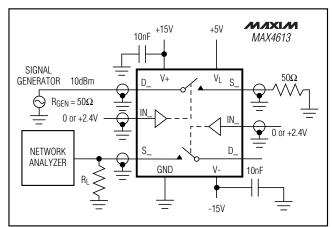


Figure 6. Crosstalk

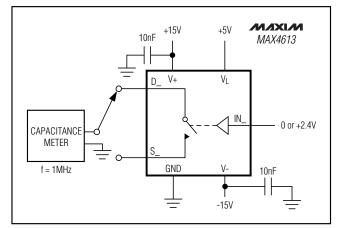
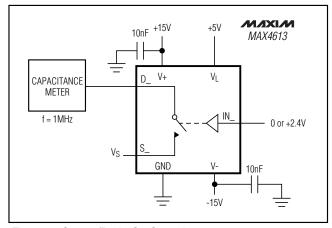
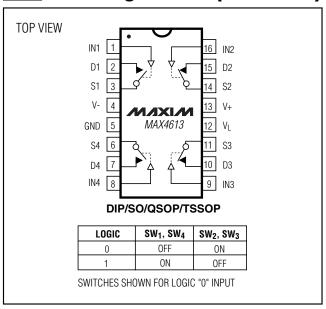
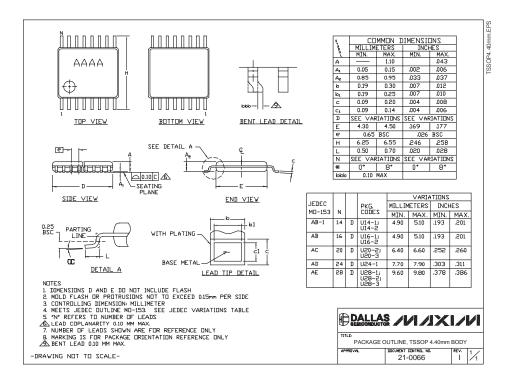
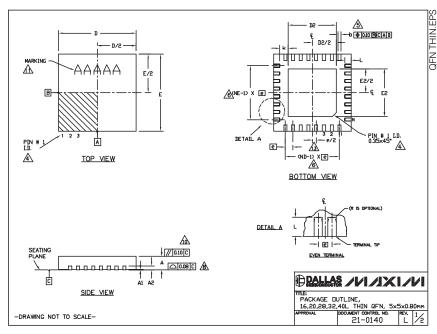


Figure 7. Source/Drain-Off Capacitance


Figure 8. Source/Drain-On Capacitance

Pin Configurations (continued)


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

		CDM	MON DIMENSIONS	ŀ				EXF	POSED	PAD \	/ARIAT	IDNS	
PKG.	16L 5×5	20L 5×5	29L 5x5	32L 5x5	40L 5×5		PKG.		D2			E2	\dashv
SYMBOL	MIN. NON. MAX.	HIN. NOM. NAX.	MIN. NOM. MAX.	MIN. NOM. MAX.	MIN. NON. MAX.	1	CODES	MIN.		MAX.	MIN.	NDM.	MAX.
Α	0.70 0.75 0.80	0.70 0.75 0.80	0.70 0.75 0.80	0.70 0.75 0.80	0.70 0.75 0.80		T1655-2	3.00	3.10	3.20	3.00	3.10	3.20
Al	0 0.02 0.05	0 0.02 0.05	0 0.02 0.05	0 0.02 0.05	0 0.02 0.05		T1655-3	3.00	3.10	3.20	3.00	3.10	3.20
A2	0.20 REF.	0.20 REF.	0.20 REF.	0.20 REF.	0.20 REF.		T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20
b	0.25 0.30 0.35	0.25 0.30 0.35	0.20 0.25 0.30	0.20 0.25 0.30	0.15 0.20 0.25		T2055-3	3.00	3.10	3.20	3.00	3.10	3.20
D			4.90 5.00 5.10				T2055-4	3.00	3.10	3.20	3.00	3.10	3.20
E			4.90 5.00 5.10			l	T2055-5	3.15	3.25		3.15	3.25	3.35
e	0.80 BSC.	.028 E9.0	0.50 BSC.	0.50 BSC.	0.40 BSC.		T2055MN-5	3.15	3.25		3.15	3.25	3.35
k				0.25	0.25		T2855-3	3.15		3.35	3.15	3.25	3.35
L			0.45 0.55 0.65			1			2.70		2.60		2.80
N	16	20	28	32	40	ļ	T2855-4 T2855-5	2.60	2.70		2.60	2.70	2.80
ND NE	4	5	7	8	10		T2955-6	3.15	3.25	3.35	3.15	3.25	3.35
JEDEC	VHHB	WHHC	WHHD-1	AHID-5		ł	T2855-7	2.60	2.70	_	2.60	2.70	2.90
JEDEC	W1810	Willie	WIND	WIND C	l	l		3.15	3.25		3.15	3.25	3.35
							T2955-8	3.15	3.25		3.15		3.35
NOTES:							T2855N-1 T3255-3	3.15	3.10	3.35	3.15	3.25	3.20
			ONFORM TO AS				T3255-4	3.00	3.10	320	3.00	3.10	3.20
			eters. Angles	ARE IN DEGRE	ES.		T3255M-4	3.00	3.10	3.20	3.00	3.10	3.20
		NUMBER OF TE					T3255-5	3.00	3.10	3,20	3.00	310	3.20
			ND TERMINAL N 2. DETAILS OF				T3255N-1	3.00	3.10	3.20	3.00	3.10	3.20
			ED WITHIN THE				T4055-1	3.40	3.50		3.40	3.50	3.60
			OLD OR MARKE		ED THE TERME	WHL #1	T4055-2	3,40	3,50		3,40	3.50	3,60
			LIZED TERMINA		SURED BETVEE	N	T4055MN-1	3.40		3.60		3.50	3.60
		nn FROM TERI						0	0.00	0.00		0.00	0.02
∕6. ND	AND NE REFER	R TO THE NUM	BER OF TERMIN	ALS ON EACH I	AND E SIDE	RESPECTIVELY.							
7. DE	POPULATION IS	POSSIBLE IN	A SYMMETRICAL	FASHION.									
			EXPOSED HEAT										
			10220, EXCEPT	EXPOSED PAD	DIMENSION FOR								
		6, T4055-1 AN											
		NOT EXCEED O	10 mm. ITATION REFERI	ENCE DAILY									
			FOR REFERENCE				i Pr	ALI	AS	40	41 4		
					RASIC DIMENS	SION 'e', ±0.05.	ة ∀انا	an colo	Uctor	/			
			H LEADED AND				TITLE:						
14. ALI							I PAI	KAGE	: DUT	LINE			
14. ALI													
	G NOT TO SO							20,28,	,32,4	DL TH			x5x0.8

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com