

LS7566R-TS Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	LS7566R-TS-DG
Manufacturer	LSI/CSI
Manufacturer Product Number	LS7566R-TS
Description	IC BIN COUNT QUAD 24BIT 48TSSOP
Detailed Description	Counter IC Binary Counter 4 Element 24 Bit Positive , Negative 48-TSSOP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
LS7566R-TS	LSI/CSI
Series:	Product Status:
	Active
Logic Type:	Direction:
Binary Counter	Up, Down
Number of Elements:	Number of Bits per Element:
4	24
Reset:	Timing:
Asynchronous/Synchronous	Asynchronous/Synchronous
Count Rate:	Trigger Type:
40 MHz	Positive, Negative
Voltage - Supply:	Operating Temperature:
3 V ~ 5.5 V	-25°C ~ 85°C (TA)
Mounting Type:	Package / Case:
Surface Mount	48-TFSOP (0.240", 6.10mm Width)
Supplier Device Package:	Base Product Number:
48-TSSOP	LS7566

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	3 (168 Hours)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0000	

LSI Computer Systems, Inc. 1235 Walt Whitman Road, Melville, NY 11747 (631) 271-0400 FAX (631) 271-0405

24-BIT x 4-AXES QUADRATURE COUNTER

FEATURES:

- Read/write registers for count and I/O modes.
 Count modes include: non-quadrature (Up/Down), Quadrature (x1, x2, x4), Free-run, Non-recycle, Modulo-n and Range limit
- Separate mode-control registers for each axis
- Interrupt output and interrupt mask register
- 40 MHz count frequency, 5V 20 MHz count frequency, 3V
- Sets of 24-bit counters, preset registers, comparators and output latches and 8-bit status registers for each axis
- Digital filtering of the input quadrature clocks for noise immumity.
- 3-state Octal I/O bus
- 3V to 5.5V operating voltage range
- · LS7566R-TS (TSSOP) See Figure 1 -

GENERAL DESCRIPTION:

The LS7566R consists of four identical modules of 24-bit programmable counters with direct interface to incremental encoders. The modules can be configured to operate as quadratureclock counters or non-quadrature up/down counters. In both quadrature and non-quadrature modes, the modules can be further configured into free-running, non-recycle, modulo-n and range-limit count modes. The mode configuration is made through two 8-bit read/write addressable control registers, MDR0 and MDR1. Data can be ported to a 24-bit preset register PR, organized in directly addressable (write-only) byte0 [PR0], byte1 [PR1] and byte2 [PR2] segments. PR can be transferred to the 24-bit counter CNTR, either by instruction to CMR or by hardware input control. A 24-bit digital comparator perpetually checks for the equality of the CNTR and the PR and can be used to set an output flag when the equality occurs. For reading the CNTR, its instantaneous value can be transferred to a 24-bit output latch OL, either by instruction to CMR or by hardware input control. The OL in turn can be read in directly addressable (read-only) byte0 [OL0], byte1 [OL1] and byte2 [OL2] segments. An addressable (read-only) Octal status register STR, stores the count related status information such as CNTR overflow, underflow, count direction, etc. Data communication for read/write is performed through an Octal 3-state parallel I/O bus.

REGISTER DESCRIPTION:

Following is a list of the hardware registers. There are four sets of registers, with name prefixes x0 through x3 to refer to axes x0 through x3.

LS7566R

July 2008

FIGURE 1

The information included herein is believed to be accurate and reliable. However, LSI Computer Systems, Inc. assumes no responsibilities for inaccuracies, nor for any infringements of patent rights of others which may result from its use.

7566R-072108-1

PR (x0PR, x1PR, x2PR, x3PR)

The PR is a 24-bit data register directly addressable for write in individual segments of byte0 [PR0], byte1 [PR1] and byte2 [PR2]. The PR serves as the input portal for the counter (CNTR), since the CNTR is not directly addressable for either read or write. In order to preset the CNTR to any desired value the data is first written into the PR and then transferred into the CNTR.

In **mod-n** and **range-limit** count modes the PR serves as the repository for the division factor n and the count range-limit, respectively. The PR can also be used to hold the compare data for the CNTR wherein the equality PR = CNTR sets an output flag.

CNTR (x0CNTR, x1CNTR, x2CNTR, x3CNTR):

The CNTR is a 24-bit up/down counter which counts the up/down pulses resulting from the quadrature clocks applied at A and B inputs or alternatively, in nonquadrature mode, pulses applied at the A input. The CNTR is not directly accessible for read or write; instead it can be preloaded with data from the PR or it can port its own data out to the OL which in turn can be accessed by read operation. In both quadrature and nonquadrature modes, the CNTR can be further configured into either free-running or single-cycle or mod-n or range-limit mode.

OL (x0OL, x1OL, x2OL, x3OL):

The OL is a 24-bit register directly addressable for read in individual segments of byte0 [OL1], byte1 [OL1] and byte2 [OL2]. OL serves as the output portal for the CNTR. Snapshot of the CNTR data can be loaded in the OL without interfering with the counting process, which then can be accessed by read.

STR (x0STR, x1STR, x2STR, x3STR):

The STR is an 8-bit status register indicating count related status.

STR:	СҮ	BW	CMP	IDX	CEN	0	U/D	S
	B7	B6	B5	B4	B3	B2	B1	B0

An individual STR bit is set to 1 when the bit related event has taken place. The STR is cleared to 0 at power-up. The STR can also be cleared through the control register CMR with the exception of bit1 (U/D) and bit3 (CEN). These two STR bits always indicate the instantaneous status of the count_direction and count_enable assertion/de-assertion. The STR bits are described below:

- B7 (CY): Carry; set by CNTR overflow
- B6 (BW): Borrow; set by CNTR underflow
- B5 (CMP): Set when CNTR = PR
- B4 (IDX): Set when INDX input is at active level
- B3 (CEN): Set when counting is enabled, reset when counting is disabled
- B2 (0): Always 0
- B1 (U/D): Set when counting up, reset when counting down
- B0 (S): Sign of count value; set when negative, reset when positive

IMR:

The IMR is a trans-axis global register used for masking out the interrupt function of individual axes. It is a 4-bit read/write register with the following bit assignments.

IMR:	B3	B2	B1	B0	
B0	= C): dis	able a	axis O	interrupt
B1	= 1	: ena	able a	xis 0 axis 1	interrupt interrupt
DI	= 1	: en	able a	axis 1	interrupt
B2	= C = 1): dis I: en	able a able a	axis 2 axis 2	interrupt interrupt
В3	= C): dis	able a	axis 3	interrupt
	= 1	: en	able a	axis 3	interrupt

A write to IMR places the lower nibble of the databus into the IMR with identical bit map. A read of IMR produces a joint read of IMR and ISR (interrupt status register), with IMR occupying the lower nibble and ISR occupying the upper nibble of the databus.

ISR:

The ISR is a trans-axis global register used to hold the interrupt assertion status of all the axes. It is a 4-bit read-only register with the following bit assignment.

1				
ISR:	B3	B2	B1	B0

- B0 = 0: axis_0 interrupt cleared
- = 1: axis_0 interrupt asserted
- B1 = 0: axis_1 interrupt cleared
- = 1: axis_1 interrupt asserted
- B2 = 0: axis_2 interrupt cleared
- = 1: axis_2 interrupt asserted
- B3 = 0: axis_3 interrupt cleared = 1: axis_3 interrupt asserted

An ISR bit gets set when the FLGa output of the associated axis switches low. For this reason, in order for the interrupt to be enabled for any axis, its associated FLGa output must be enabled. In addition, the associated IMR bit must also be set for the interrupt to be enabled.

An individual ISR bit can be cleared through its axis relevant CMR register. The ISR is cleared upon power-up.

A read of ISR produces a joint read of ISR and IMR (interrupt mask register) with ISR occupying the upper nibble and IMR occupying the lower nibble of the databus.

CMR (x0CMR, x1CMR, x2CMR, x3CMR):

The CMR is a write only register, which when written into, generates transient signals to perform load and reset operations as described below:

- CMR: B7 B6 B5 B4 B3 B2 B1 B0
 - B0 = 0: Nop
 - = 1: Reset CNTR and sign to 0. (Should not be combined with load_CNTR operation).
 - B1 = 0: Nop
 - = 1: Load CNTR from PR. Affects all 24 bits. (Should not be combined with reset_CNTR operation)
 - B2 = 0: Nop
 - = 1: Load OL from CNTR. Affects all 24 bits.
 - B3 = 0: Nop
 - = 1: Reset STR. Affects status bits corresponding to carry, borrow, compare and index. Status bits corresponding to count_enable, count direction and sign are not affected.

B4 = 0: Nop.

- 1: Master reset. Resets MDR0, MDR1, STR, CNTR, PR, OL, ISR and IMR
- B5 = 0: Nop
 - 1: Set sign bit
- B6 = 0: Nop
 - 1: Reset sign bit
- B7 = 0: Nop.
 - 1: Reset ISR bit for the selected axis

٦

MDR0 (x modes ar	0MD nd th	R0, x e inde	1MDR0, ex input	, x2M functi	I D0, : ional	x3MI ity. U	D R0) : pon p	The MDR0 is an 8-bit read/write register which configures the counting power-up, the MDR0 is cleared to zero.
MDR0:	B7	B6	B5 B4	B3	B2	В1	в0	
B1B0 B3B2 B5B4 B6 B7	$ \begin{array}{c} D = C \\ = 0 \\ = 1 \\ = 1 \\ 2 = C \\ = 0 \\ = 1 \\ $	0: No 1: x1 0: x2 1: x4 0: Fr 1: Si 0: Ra 0: Ra 0: Co 0: Co 1: Co 0: Co 0: Co 1: Co 0:	on-quad quadra quadra quadra quadra quadra quadra ree-runr ngle-cy ange-lin odulo-n o directic NTR is p ilse is ge sable IN onfigure onfigure onfigure synchron ynchrono put filter put filter	rature ture o ture o ture o ture o rcle c nit co freeze o cour on, the orese enera NDX/i IND> IND> IND> nous ous If clock	e count count count count count count ount r e con t to t t to t t to t to t to t t to t to t to t to t to to to to to to	unt m t moo t moo t moo t moo t moo thes ode (i ITR is ode (i ITR is the va the va the r the l K/ inpu CK) d	ode (. de (or de (tw de (fo de. e (CN e (Up a e limi nput o s clea alue c ch lim s the l eset oad_0 ut t (ove ivision factor	A = clock, B = direction). he count per quadrature cycle). to counts per quadrature cycle). ur counts per quadrature cycle). UTR disabled with carry and borrow , re-enabled with reset or load) and down count ranges are limited between PR and zero, respectively. ts but resumes when the direction is reversed) count clock frequency is divided by a factor of [n+1], where n = PR. In ared to 0 at CNTR = PR and up count continues. In down direction, the of PR at CNTR = 0 and down count continues. A mod-n rollover marker tit at the FLGa output). load CNTR input (transfers PR to CNTR). _CNTR input (clears CNTR to 0). OL input (transfers CNTR to OL). erridden in non-Quadrature Mode) n factor = 1. Filter clock frequency = fPCK. r = 2. Filter clock frequency = fPCK/2.
MDR1 (x0 FLGb out cleared to MDR1: B0 B1 B2 B3 B5B4 B6 B7	$\begin{array}{c} \text{MDF} \\ \text{but fu} \\ \text{zerc} \\ \text{B7} \\ \hline \\ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	R1, x1 unctio B6 I Ena Ena Ena Ena C Ena C Ena	IMDR1, nality. Ir able Car able Car able Cor both up a atched o able inde Gb disat Gb = Si Gb = Up able cou sable cou sable cou	x2MI n addi B3 B3 rry on row of mpare and d or unla ex on oled (gn, h b/Dov unting unting tched on-late	D1, x ition, B2 FLC pn FL lown FL e on lown atche FLC fixed igh fc vn cc 3. g. cched	A SMD the I B1 B1 Ga (fla Ga (FLGa cour ed low ia (fl I high or ne ount of and	B0 B0 Ags C flags a (In f at dire v is go ags ir) gative direct	The MDR1 is an 8-bit read/write register which configures the FLGa and I can be used to enable/disable counting.Upon power-up, the MDR1 is NTR overflow; latched or unlatched logic low on carry). CNTR underflow, latched or unlatched logic low on borrow). ree-running count mode a latched or unlatched logic low is generated ections at CNTR = PR. In contrast, in range-limit and mod-n count modes enerated at CNTR = PR in the up-count direction only. ndex, latched or unlatched logic low when INDX/ input is at active level) e signifying CNTR underflow, low for positive. ion, high in count-up, low in count-down.
NOTE: C	arry,	Borro	ow, Com	ipare	and	Inde	k can	all be simultaneously enabled on FLGa.

TABLE 1

I/O PINS: The following is a description of the input/output pins.

RSO(Pin 3), RS1 (Pin 2), RS2 (Pin1).

Inputs. These three inputs select the hardware registers for read/write access according to Table 1.

CS/	RS2	<u>RS1</u>	RS0	RD/	WR/	SELECTED REGISTER	OPERATION
1	х	х	х	х	х	none	none
Х	х	х	х	0	0	none	none
х	х	х	х	1	1	none	none
0	0	0	0	0	1	[ISR:IMR]	READ (NOTE 2)
0	0	0	1	0	1	MDR0	READ
0	0	1	0	0	1	MDR1	READ
0	0	1	1	0	1	STR	READ
0	1	0	0	0	1	OL0	READ
0	1	0	1	0	1	OL1	READ
0	1	1	0	0	1	OL2	READ
0	1	1	1	0	1	none	none
0	0	0	0	1	0	IMR	WRITE
0	0	0	1	1	0	MDR0	WRITE
0	0	1	0	1	0	MDR1	WRITE
0	0	1	1	1	0	none	none
0	1	0	0	1	0	PR0	WRITE
0	1	0	1	1	0	PR1	WRITE
0	1	1	0	1	0	PR2	WRITE
0	1	1	1	1	0	CMR	WRITE

Note 1. x indicates don't care case.

Note 2. DB0 through DB3 contain IMR B0 through B3; DB4 through DB7 contain ISR B0 through B3.

CHS0 (Pin 5), CHS1 (Pin 4)

Inputs. These two inputs select one of four axes for read/write access according to the following table. The registers within the axis are selected according to Table 1.

TA	BLE	2
----	-----	---

CHS1	CHS0	AXIS
0	0	x0
0	1	x1
1	0	x2
1	1	x3

RD/ (Pin 8) Input. A low on RD/ input accesses an addressed register for read and places the data on the octal databus, DB<7:0>. The register selection is made according to Table 1.

CS/ (Pin 9) Input. A low on the CS/ input enables the chip for read or write operation. When the CS/ input is high, read and write operations are disabled and the databus, DB<7:0> is placed in a high impedance state.

WR/ (Pin 10) Input. A low pulse on the WR/ input writes the data on the databus, DB<7:0> into the addressed register according to Table 1. The write operation is completed at the trailing edge of the WR/ pulse.

DB<7:0> (Pin 18 thru Pin 11) Input/Output. The octal databus DB<7:0> is the input/output portal for write and read data transfers between LS7566R and the outside world. During a read operation, when both CS/ and the RD/ inputs are low, DB<7:0> are outputs. During a write operation, when both CS/ and WR/ are low, DB<7:0> are inputs. When CS/ is high, DB<7:0> are in high impedance state independent of the states of RD/ and WR/.

PCK (Pin21) Input. A clock applied at PCK input is used for validating the logic states of the A and B quadrature clocks and the INDX/ input. The PCK input frequency, fPCK is divided down by a factor of 1 or 2 according to bit7 of MDR0. The resultant clock is used to sample the logic levels of the A, the B and the INDX/ inputs. If a logic level at any of these inputs remains stable for a minimum of two filter clock periods, it is validated as a correct logic state. The PCK input is common to all four axes, but the filter clock frequency for any axis is set by its associated MDR0 register.

In non-quadrature mode no filter clock is used and the PCK input should be tied to either VDD or GND.

x0A (pin 24), **x0B** (Pin 25) Inputs. These are the A and B count inputs in axis x0. These inputs can configured to function either in quadrature mode or in non-quadrature mode. The configuration is made through MDR0. In quadrature mode, A and B clocks are 90 degrees out of phase. When A leads B in phase, the CNTR counts up and when B leads A in phase, the CNTR counts down.

In non-quadrature mode, A is the count input and B is the count direction control input. When B is **high**, positive transitions at the A input causes the CNTR to count **up**. Conversely, when B is **low**, the positive transition at the A input causes the CNTR to count **down**.

In quadrature mode, A and B inputs are sampled by an internal filter clock generated from the PCK input. In nonquadrature mode A and B inputs are not sampled and the count clocks are applied to the CNTR bypassing the filter circuit.

x1A (Pin 27), x1B (Pin 28), x2A (Pin 32), x2B (Pin33), x3A (Pin 35), x3B (Pin36)

These are the A and B inputs corresponding to axes x1, x2 and x3. Functionally, they are identical with the A and B inputs of axis x0.

x0INDX/ (Pin 23) Input. The INDX/ input in axis x0. The INDX/ input can be configured by MDR0 to function as load_CNTR or reset_CNTR or load_OL input. In quadrature mode, the INDX/ input can be configured to function in either synchronous or asynchronous mode. In synchronous mode, the INDX/ input is sampled with the same filter clock used for sampling the A and the B inputs and must satisfy the phase relationship with A and B in which INDX/ is at the active level during a minimum of quarter cycle of both A and B high or both A and B low.

In asynchronous mode the INDX/ input is not sampled and can be applied in any phase relationship with respect to the A and B inputs.

The INDX/ input can be either enabled or disabled in both synchronous and asynchronous modes.

x1INDX/ (Pin 26), **x2INDX/** (Pin 29), **x3INDX/** (Pin 34) These are the INDX inputs corresponding to axes x1, x2 and x3. Functionally, they are identical with the INDX input of axis x0.

INT/ (Pin 45) Output

The INT/ output is the common interrupt output for all the axes. When any of the ISR bits gets set, INT/ switches low indicating an asserted interrupt. The axis generating the interrupt can then be identified by reading the ISR register.

x0FLGa (Pin 48) Output. The FLGa output in axis x0. The FLGa output is configured by MDR1 register to function as either Carry or Borrow or Compare or Index flag. A Carry flag is generated when the CNTR overflows, a Borrow flag is generated when the CNTR underflows and a Compare flag is generated by the condition, CNTR=PR. When configured as Index, the FLGb output switches low when the INDX input is enabled and at active level. The FLGa can be configured to produce outputs in either latched mode or instantaneous mode. In the latched mode when the selected event of Carry or Borrow or Compare or Index has taken place, the FLGa switches low and remains low until the status register, STR is cleared. In the instantaneous mode a negative pluse is generated instantaneously when the event takes place. The FLGa output can be disabled to remain at a fixed logic high.

x1FLGa (Pin 46), **x2FLGa** (Pin 41), **x3FLGa** (Pin 39) These outputs are the FLGa outputs corresponding to axes x1, x2 and x3 respectively. Functionally, they are identical with the FLGa output of axis x0.

x0FLGb (Pin 47) Output. The FLGb output in axis x0. The FLGb output is configured by MDR1 to function as either Sign or Up/Down status indicator.

When configured as Sign, the FLGb output remains high when CNTR is in an underflow state (caused by down counts at or below zero), indicating a negative number. When the CNTR counts up past zero, FLGb switches low, indicating a positive number.

When configured as Up/Down indicatior, a high at the FLGb indicates that the current count direction is up (incremental) whereas a low indicates that the direction is down (decremental).

The FLGb output can be disabled to remain at a fixed logic high.

x1FLGb (Pin42), **x2FLGb** (Pin 40) **x3FLGb** (Pin 38) These are the FLGb outputs corresponding to axes x1, x2 and x3 respectively. Functionally, they are identical with the FLGb output of x0.

Absolute Maximum Ratings:								
Parameter	Symbol	Values	Unit					
Voltage at any input	VIN	Vss - 0.3 to VDD + 0.3	V					
Supply Voltage	Vdd	+7.0	V					
Operating Temperature	Та	-25 to +85	oC					
Storage Temperature	Tstg	-65 to +150	oC					

DC Electrical Characteristics. (TA = -25° C to $+85^{\circ}$ C, VDD = 3V to 5.5V)

Parameter	Symbol	Min. Value	Max.Value	Unit	Remarks
Supply Voltage	VDD	3.0	5.5	V	-
Supply Current	IDD	-	800	μA	All clocks off
Input Logic Low	VIL	-	0.15VDD	V	-
Input Logic High	VIH	0.5VDD	-	V	-
Output Low Voltage	Vol	-	0.5	V	IOSNK = $5mA$, VDD = $5V$
Output High Voltage	Vон	Vdd - 0.5	-	V	IOSRC = 1mA, VDD = 5V
Input Leakage Current	lilk	-	30	nA	-
Data Bus Leakage Current	Idlk	-	60	nA	Data bus off
Data Bus Source Current	IOSRC	3.0	-	mA	VO = VDD - 0.5V, VDD = 5V
Data Bus Sink Current	Iosnk	8.0	-	mA	VO = 0.5V, VDD = 5V
FLGa, FLGb, INT/ Source	IOSRC	1.0	-	mA	VO = VDD - 0.5V, VDD = 5V
FLGa, FLGb, INT/ Sink	Iosnk	6.0	-	mA	VO = 0.5V, VDD = 5V

Transient Characteristics. (TA = -25° to $+85^{\circ}$ C) For VDD = 3V to 5.5V

Parameter	Symbol	Min. Value	Max.Value	Unit	Remarks
Read Cycle (See Fig. 2)	-				
RD/ Pulse Width	tr1	80	-	ns	-
CS/ Set-up Time	tr2	80	-	ns	-
CS/ Hold Time	tr3	0	-	ns	-
RS<2:0> Set-up Time	tr4	80	-	ns	-
RS<2:0> Hold Time	tr5	10	-	ns	-
CHS<1:0> Set-up Time	tr6	80	-	ns	-
CHS<1:0> Hold Time	tr7	10	-	ns	-
DB<7:0> AccessTime	tr8	80	-	ns	Access starts when both RD/ and CS/ are low.
DB<7:0> Release Time	tr9	-	35	ns	Release starts when either RD/ or CS/ is terminated.
Back to Back Read delay	t r10	10	-	ns	-
Write Cycle (See Fig. 3)					
WR/ Pulse Width	tw1	45	-	ns	-
CS/ Set-up Time	tw2	45	-	ns	-
CS/ Hold Time	twз	0	-	ns	-
RS<2:0> Set-up Time	tw4	45	-	ns	-
RS<2:0> Hold Time	tw5	10	-	ns	-
CHS<1:0> Set-up Time	t w6	45	-	ns	-
CHS<1:0> Hold Time	tw7	10	-	ns	-
DB<7:0> Set-up Time	twa	45	-	ns	-
DB<7:0> Hold Time	tw9	10	-	ns	-
Back to Back Write Delay	t w10	90	-	ns	-

For VDD = 3.3V ±10%					
Parameter S	ymbol	Min. Value	Max.Value	Unit	Remarks
Quadrature Mode (See Fig. 4-6)					
PCK High Pulse Width	t1	24	-	ns	-
PCK Low Pulse Width	t2	24	-	ns	-
PCK Frequency	f PCK	-	20	MHz	-
Filter Clock(ff)Period	tз	50	-	ns	t3 = t1+ t2, MDR0 <7> =0
	tз	100	-	ns	t3 = t1+ t2, MDR0 <7> =1
Filter clock frequency	ff	-	20	MHz	$ff = 1/t_3$
Quadrature Separation	t4	52	-	ns	t4 > t3
Quadrature Clock Pulse Width	t5	105	-	ns	t5 > 2t3
Quadrature Clock frequency	fqa, fqb	-	4.5	MHz	$fQA = fQB < 1/4t_3$
Quadrature Clock to Count Delay	tQ1	4t3	5t3	-	-
X1/X2/X4 Count Clock Pulse Width	tQ2	25	-	ns	$t_{Q2} = t_3/2$
Quadrature Clock to					
FLGa delay	tfda	4.5t3	5.5t3	ns	-
Quadrature Clock to					
FLGb delay	tfdb	3t3	4t3	ns	-
FLGa to IN I/ delay	tnt	0	-	ns	-
INDX/ Input Pulse Width (Synchronous	5) tid	60	-	ns	tid > t4
INDX/ set-up time (Synchronous)	tis	10	-	ns	-
INDX/ hold time (Synchronous)	tih	10	-	ns	-
FLGa Output Width	l fw	50	-	ns	Itw I4
Non-Quadrature Mode (See Fig. 7-8)					
Clock A - High Pulse Width	te	24	-	ns	_
Clock A - Low Pulse Width	to t7	24	-	ns	-
Direction Input B Set-up Time	t8s	24	-	ns	_
Direction Input B Hold Time	t8	20	-	ns	_
Clock Frequency	fA	-	20	MHz	$f_{A} = (1/(t_{6} + t_{7}))$
Clock to FLGa Out Delay	t9	-	40	ns	-
FLGa Out Pulse Width	t10	24	-	ns	$t_{10} = t_7$
INDX/ Pulse Width (Asynchronous)	t11	30	-	ns	-
·····					
For VDD = $5V \pm 10\%$					
For VDD = 5V ±10% Parameter S	ymbol	Min. Value	Max.Value	Unit	Remarks
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PO(Chilada Duda 2 Withthe	ymbol	Min. Value	Max.Value	Unit	Remarks
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Light Pulse Width	ymbol	Min. Value	Max.Value -	Unit ns	Remarks -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Evenuesey	ymbol t1 t2	Min. Value 12 12	Max.Value - - 40	Unit ns ns	Remarks - -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Cleak(#Deriod	ymbol tı t2 fpСк	Min. Value 12 12 -	Max.Value - - 40	Unit ns ns MHz	Remarks - - -
For VDD = 5V ±10% ParameterQuadrature Mode (See Fig. 4-6)PCK High Pulse WidthPCK Low Pulse WidthPCK FrequencyFilter Clock(ff)Period	ymbol t1 t2 fpCK t3 t2	Min. Value 12 12 - 25 50	Max.Value - - 40 -	Unit ns ns MHz ns	Remarks t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1
For VDD = 5V ±10% ParameterSQuadrature Mode (See Fig. 4-6)PCK High Pulse WidthPCK Low Pulse WidthPCK FrequencyFilter Clock(fr)Period	ymbol t1 t2 fpCK t3 t3	Min. Value 12 - 25 50	Max.Value - - 40 - -	Unit ns ns MHz ns ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1
For VDD = 5V ±10% ParameterQuadrature Mode (See Fig. 4-6)PCK High Pulse WidthPCK Low Pulse WidthPCK FrequencyFilter Clock(fr)Period	ymbol t1 t2 fpCK t3 t3 ff	Min. Value 12 - 25 50 -	Max.Value - - 40 - - 40	Unit ns ns MHz ns ns MHz	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 -
For VDD = 5V ±10% ParameterQuadrature Mode (See Fig. 4-6)PCK High Pulse WidthPCK Low Pulse WidthPCK FrequencyFilter Clock(fr)PeriodFilter clock frequencyQuadrature Separation	ymbol t1 t2 fpCK t3 t3 ff t4	Min. Value 12 - 25 50 - 26	Max.Value - - 40 - - - 40 -	Unit ns ns MHz ns ns MHz ns	Remarks t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3
For VDD = 5V ±10% ParameterQuadrature Mode (See Fig. 4-6)PCK High Pulse WidthPCK Low Pulse WidthPCK FrequencyFilter Clock(fr)PeriodFilter clock frequencyQuadrature SeparationQuadrature Clock Pulse Width	t1 t2 fpCK t3 t3 ff t4 t5	Min. Value 12 - 25 50 - 26 52	Max.Value 40 40 40 40	Unit ns ns MHz ns ns MHz ns ns	Remarks t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3
For VDD = 5V ±10% ParameterQuadrature Mode (See Fig. 4-6)PCK High Pulse WidthPCK Low Pulse WidthPCK FrequencyFilter Clock(ft)PeriodFilter clock frequencyQuadrature SeparationQuadrature Clock Pulse WidthQuadrature Clock frequency	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB	Min. Value 12 - 25 50 - 26 52 -	Max.Value 40 - 40 - 40 - 9.6	Unit ns ns MHz ns ns MHz ns ns MHz	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < $1/4$ t3
For VDD = 5V ±10% ParameterSQuadrature Mode (See Fig. 4-6)PCK High Pulse WidthPCK Low Pulse WidthPCK FrequencyFilter Clock(ft)PeriodFilter Clock(ft)PeriodFilter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock frequency Quadrature Clock frequency Quadrature Clock to Count Delay	t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1	Min. Value 12 - 25 50 - 26 52 - 4t3	Max.Value 40 40 40 9.6 5t3	Unit ns ns MHz ns ns MHz ns MHz -	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock frequency Quadrature Clock frequency Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2	Min. Value 12 - 25 50 - 26 52 - 4t3 12	Max.Value 40 - 40 - 40 40 - 513	Unit ns ns MHz ns ns MHz ns MHz - ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock frequency Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2	Min. Value 12 - 25 50 - 26 52 - 4t3 12	Max.Value 40 - 40 40 - 513	Unit ns ns MHz ns ns MHz ns MHz - ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter Clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock frequency Quadrature Clock frequency Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3	Max.Value 40 - 40 - 40 - 5.5t3	Unit ns ns MHz ns ns MHz ns MHz - ns ms ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3	Max.Value 40 - 40 40 - 5.5t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGb delay	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3	Max.Value - - 40 - - 40 - - 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock (fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 20	Max.Value 40 - 40 - 40 - 5.5t3 4t3 -	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 - -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous)	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt t1 tQ2	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5	Max.Value 40 - 40 40 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 - - tid > t4
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter Clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous) INDX/ set-up time (Synchronous) INDX/ beld time (Courterparameter)	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt tis ti	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 -	Max.Value - - 40 - - 40 - - 9.6 5t3 - 5.5t3 4t3 - - -	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 - - tid > t4 -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock (fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous) INDX/ hold time (Synchronous) INDX/ hold time (Synchronous)	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt tis tin tin	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24	Max.Value 40 - 40 40 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 - - tid > t4 - -
For VDD = 5V ±10% ParameterSQuadrature Mode (See Fig. 4-6)PCK High Pulse WidthPCK Low Pulse WidthPCK FrequencyPCK FrequencyFilter Clock(fr)PeriodFilter Clock (fr)PeriodFilter Clock frequencyQuadrature SeparationQuadrature Clock Pulse WidthQuadrature Clock frequencyQuadrature Clock to Count Delayx1 / x2 / x4 Count Clock Pulse WidthQuadrature Clock toFLGa delayQuadrature Clock toFLGa to INT/ delayINDX/ Input Pulse Width (Synchronous)INDX/ hold time (Synchronous)INDX/ hold time (Synchronous)	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt ts tin tfw	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24	Max.Value 40 40 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 - - tid > t4 - tw t4
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter Clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous) INDX/ set-up time (Synchronous) INDX/ hold time (Synchronous) FLGa Output Width	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt ts tid tis tid tis tid tfdb	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24	Max.Value - 40 - - 9.6 5t3 - 5.5t3 4t3 - - - - -	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < $1/4t3$ - tQ2 = t3/2 - - tid > t4 - tw t4
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous) INDX/ hold time (Synchronous) INDX/ hold time (Synchronous) FLGa Output Width	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt ts tid tis tid tfdb tnt tis tid tfdb tid tis tid tfdb	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24 12	Max.Value 40 - 40 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < $1/4t3$ - tQ2 = t3/2 - - tid > t4 - tfw t4
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous) INDX/ hold time (Synchronous) INDX/ hold time (Synchronous) FLGa Output Width	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt ts tid tis tid tft t4 t5 fQA, fQB t4 t5 fQA, fQB t4 t5 fQA t6 fQA t6 t6 t6 t6 t6 t6 t6 t6 t6 t6	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24 12 12	Max.Value 40 40 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < $1/4t3$ - tQ2 = t3/2 - - tid > t4 - tw t4
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous) INDX/ set-up time (Synchronous) INDX/ hold time (Synchronous) FLGa Output Width Non-Quadrature Mode (See Fig. 7-8) Clock A - High Pulse Width Clock A - Low Pulse Width	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt tis tid tis tid tfdb tnt tis tid tfdb tnt tis tid tis tid tfdb tis tid tis tid tid tid tid tid tid tid tid	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24 12 12 12 12 12	Max.Value 40 40 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < $1/4t3$ - tQ2 = t3/2 - - tid > t4 - tw t4
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous) INDX/ hold time (Synchronous) INDX/ hold time (Synchronous) FLGa Output Width Non-Quadrature Mode (See Fig. 7-8) Clock A - High Pulse Width Clock A - Low Pulse Width Direction Input B Set-up Time Direction Input B Hold Time	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt tid tis tid tftb tnt tid ts tda tftb ta ta tftb tda tftb ta ta tftb ta ta ta ta ta ta ta ta ta ta	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24 12 12 12 12 12 12 10	Max.Value 40 - 40 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < $1/4t3$ - tQ2 = t3/2 - - tid > t4 - tfw t4 -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGb delay FLGa to INT/ delay INDX/ Input Pulse Width (Synchronous) INDX/ hold time (Synchronous) INDX/ hold time (Synchronous) FLGa Output Width Non-Quadrature Mode (See Fig. 7-8) Clock A - High Pulse Width Direction Input B Set-up Time Direction Input B Hold Time Clock Frequency	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt tid tis tid tftb tnt tis tid tftb thttis ta tfdA tfdA tda tftb thttis ta tfdA	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24 12 12 12 12 12 10 -	Max.Value 40 40 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 - - tid > t4 - tfw t4 - - fA = (1/ (t6 + t7))
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay INDX/ Input Pulse Width (Synchronous) INDX/ Input Pulse Width (Synchronous) INDX/ lood time (Synchronous) INDX/ hold time (Synchronous) INDX/ hold time (Synchronous) FLGa Output Width Non-Quadrature Mode (See Fig. 7-8) Clock A - High Pulse Width Clock A - Low Pulse Width Direction Input B Set-up Time Direction Input B Hold Time Clock Frequency Clock to FLGa Out Delay Clock to FLGa Out Delay	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt tid tis tid tftb tnt tis tid tftb tnt tis tid tftb to tid tftb tid tftb to tid to tftb tid to tid to tid to tid to tid tid to tid to tid tid tid tid tid tid tid tid	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24 12 12 12 12 10	Max.Value 40 40 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns ms ns ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 - - - - - - - - - - - - -
For VDD = 5V ±10% Parameter S Quadrature Mode (See Fig. 4-6) PCK High Pulse Width PCK Low Pulse Width PCK Low Pulse Width PCK Frequency Filter Clock(fr)Period Filter clock frequency Quadrature Separation Quadrature Clock Pulse Width Quadrature Clock frequency Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to Count Delay x1 / x2 / x4 Count Clock Pulse Width Quadrature Clock to FLGa delay Quadrature Clock to FLGa delay Quadrature Clock to FLGa delay Ruadrature Clock to FLGa delay INDX/ Input Pulse Width (Synchronous) INDX/ Input Pulse Width (Synchronous) INDX/ lood time (Synchronous) INDX/ hold time (Synchronous) INDX/ hold time (Synchronous) FLGa Output Width Non-Quadrature Mode (See Fig. 7-8) Clock A - High Pulse Width Clock A - Low Pulse Width Direction Input B Set-up Time Direction Input B Hold Time Clock Frequency Clock to FLGa Out Delay FLGa Out Pulse Width	ymbol t1 t2 fpCK t3 t3 ff t4 t5 fQA, fQB tQ1 tQ2 tfda tfdb tnt tid tis tin tfw tfo tid ta tfo tfo tfo tfo tfo tfo tfo tfo	Min. Value 12 12 - 25 50 - 26 52 - 4t3 12 4.5t3 3t3 0 32 5 5 24 12 12 12 12 10 - 12 12 10 - 12	Max.Value 40 - 40 9.6 5t3 - 5.5t3 4t3	Unit ns ns MHz ns ns MHz - ns MHz - ns ns ns ns ns ns ns ns ns ns ns ns ns	Remarks - - - t3 = t1+ t2, MDR0 <7> =0 t3 = t1+ t2, MDR0 <7> =1 - t4 > t3 t5 > 2t3 fQA = fQB < 1/4t3 - tQ2 = t3/2 - - - - - - - - - - - - -

C Sample Routines	for Interfacing with LS7566R
<pre>#include <stdio.h> #include <stdlib.h> #include <conio.h></conio.h></stdlib.h></stdio.h></pre>	
/*************************************	·····
#define axis_0 0	x00
#define axis_1 0	x01
#define axis_2 0	x02
#define axis_3 0	x03
/*************************************	RESSES
#define ISR_IMR(arg) (arg + 0)
#define STR(arg)	(arg + 0x0C)
#define OL0(arg)	(arg + 0x10)
#define OL1(arg)	(arg + 0x14)
#define OL2(arg)	(arg + 0x18)
/**************************************	*****
WRITE ONLY ADD	DRESSES
#define IMR(arg)	(arg + 0)
#define PR0(arg)	(arg + 0x10)
#define PR1(arg)	(arg + 0x14)
#define PR2(arg)	(arg + 0x18)
#define CMR(arg)	(arg)
/*************************************	DDRESSES
#define MDR0(arg)	(arg + 0x04)
#define MDR1(arg)	(arg + 0x08)
/*************************************	***************************************
/* IMR (Interrupt Masl	k Register) */
#define Dis_Int_x0	0x00
#define En_Int_x0	0x01
#define Dis_Int_x1	0x00
#define En_Int_x1	0x02
#define Dis_Int_x2	0x00
#define En_Int_x2	0x04
#define Dis_Int_x3	0x00
#define En_Int_x3	0x08

/* CMR (Load / Reset F	Reaister) */	
#define Rst CNTR	0x01	
#define Ld_CNTR	0x02	
#define Ld_OL	0x04	
#define Rst_STR	0x08 /* CEN, U/D, S not affected *	/
#define Master_Rst	0x10	
#define Set_Sign	0x20	
#define Rst_Sign	0x40	
#define Rst_ISR	0x80	
/* MDR0 (Counting Mo	des / Index Input Functionality) */	
#define NQDX	0x00	
#define QDX1	0x01	
#define QDX2	0x02	
#define QDX4	0x03	
#define FreeRun	0x00	
#define SngleCyc	0x04	
#define RngLmt	0x08	
#define ModN	0x0C	
#define DisIDX	0x00	
#define LCNTR	0x10	
#define RCNTR	0x20	
#define LOL	0x30	
#define ASYN_IDX	0x00	
#define SYN_IDX	0x40	
#define FDF1	0x00	
#define FDF2	0x80	
/* MDR1 (FLGa / FLGb	Output Functionality) */	
#define DisFLGa	0x00	
#define CY	0x01	
#define BW	0x02	
#define CMP	0x04	
#define IDX	0x08	
#define DisFLGb	0x00	
#define SIGN	0x10	
#define UPDN	0x20	
#define EnCNTR	0x00	
#define DisCNTR	UX4U	
#define Ltch_FLGa	UXUU	
#define Instnt_FLGa	0880	

Initialize 7566

Set x0A, x0B for Non-Quadrature Mode Free-running Mode A = clk, B = up / dn

Configure x0-INDX as the Reset Counter pin FLGa - Carry / Borrow / Compare FLGb disabled Enable counting FLGa - instantaneous

Set x1A, x1B for x1-Quadrature Mode Free-running Mode

Configure x1- INDX as the load_OL pin

Set for Synchronous INDX input Input Filter Clock Division Factor = 1 FLGa - Carry / Borrow / Compare / Index FLGb disabled Enable Counting FLGa - latched

Set x2A, x2B for x4-Quadrature Mode Modulo N Count Mode for N = 0x123456

Disable INDX input Input Filter Clock Division Factor = 2 FLGa - Carry / Borrow / Compare FLGb disabled Enable Counting FLGa – latched Disable x3A, x3B counting

```
void Init 7566(int Addr){
/* Set up for x0-axis */
outp(MDR0(Addr + axis 0), (NQDX + FreeRun + RCNTR + ASYN IDX));
outp(MDR1(Addr + axis_0), (CY + BW + CMP + DisFLGb + EnCNTR + Instnt_FLGa));
/* Set up for x1-axis */
outp(MDR0(Addr + axis_1), (QDX1 + FreeRun + RCNTR + SYN_IDX + FDF1));
outp(MDR1(Addr + axis_1), (CY + BW + CMP + IDX + DisFLGb + EnCNTR + Ltch_FLGa));
/* Set up for x2-axis */
outp(MDR0(Addr + axis_2), (QDX4 + ModN + DisIDX + FDF2));
outp(MDR1(Addr + axis_2), DisCNTR);
outp(PR0(Addr + axis 2), 0x56);
outp(PR1(Addr + axis_2), 0x34);
outp(PR2(Addr + axis 2), 0x12);
outp(CMR(Addr + axis_2), Ld_CNTR);
outp(MDR1(Addr + axis_2), (CY + BW + CMP + DisFLGb + EnCNTR + Ltch_FLGa));
/* Set up for x3-axis */
outp(MDR1(Addr + axis 3), DisCNTR);
}
/* Write 7566 PR
Input: Addr has address of 7566 counter
Data has 24 bit data to be written to PR Register of axis-x0 */
void Write 7566 PR(int Addr, unsigned long Data);
void Write 7566 PR(int Addr, unsigned long Data){
outp(PR0(Addr + axis_0), Data);
Data >>= 8;
outp(PR1(Addr + axis_0), Data);
Data >>= 8;
outp(PR2(Addr + axis_0), Data);
}
```

```
/* Read_7566_OL
Input: Addr has address of 7566 counter
Output: Data returns 24 bit OL register value of axis-x0 */
```

```
unsigned long Read_7566_OL(int Addr);
```

```
unsigned long Read_7566_OL(int Addr){
unsigned long Data = 0;
outp(CMR(Addr + axis_0), Ld_OL);
Data l= (unsigned long) inp(OL0(Addr + axis_0));
Irotr(Data,8);
Data l= (unsigned long) inp(OL1(Addr + axis_0));
Irotr(Data,8);
Data l= (unsigned long) inp(OL2(Addr + axis_0));
Irotr(Data,16);
return(Data);
}
```

/* Read x0-axis Status Register */

```
unsigned char Get_7566_Status(int Addr);
```

```
unsigned char Get_7566_Status(int Addr){
return(inp(STR(Addr + axis_0)));
}
```

```
/* Read IMR and ISR */
unsigned char Get_7566_Interrupt_Status(int Addr);
```

```
unsigned char Get_7566_Interrupt_Status(int Addr){
return(inp(ISR_IMR(Addr)));
```

}

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

<section-header></section-header>		
Herein Harris Harris Harris Harris Harris Harris Harris Harris Harris Harris Harris Harris Harris <t< td=""><td>Handbard Barran and Angel and Angel</td><td>A SA B CONTRACTOR OF A SA CONTRA</td></t<>	Handbard Barran and Angel	A SA B CONTRACTOR OF A SA CONTRA

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.