

MP2143HGD-Z Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	MP2143HGD-Z-DG
Manufacturer	Monolithic Power Systems Inc.
Manufacturer Product Number	MP2143HGD-Z
Description	IC REG BUCK ADJ 3A 10QFN
Detailed Description	Buck Switching Regulator IC Positive Adjustable 0.6 V 1 Output 3A 10-VFDFN

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MP2143HGD-Z	Monolithic Power Systems Inc.
Series:	Product Status:
	Active
Function:	Output Configuration:
Step-Down	Positive
Topology:	Output Type:
Buck	Adjustable
Number of Outputs:	Voltage - Input (Min):
1	2.5V
Voltage - Input (Max):	Voltage - Output (Min/Fixed):
5.5V	0.6V
Voltage - Output (Max):	Current - Output:
5V	3A
Frequency - Switching:	Synchronous Rectifier:
1.8MHz ~ 3MHz	Yes
Operating Temperature:	Mounting Type:
-40°C ~ 125°C (TJ)	Surface Mount
Package / Case:	Supplier Device Package:
10-VFDFN	10-QFN (3x2)
Base Product Number:	
MP2143	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

MP2143H 3A, 5.5V, 2.0MHz Synchronous Step Down Switcher

The Future of Analog IC Technology

DESCRIPTION

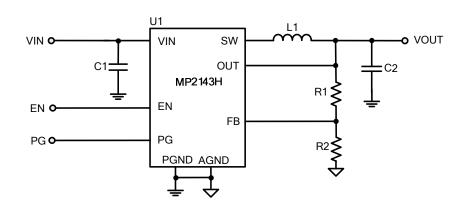
The MP2143H is a monolithic, step-down, switch-mode converter with internal power MOSFETs. It can achieve up to 3A continuous output current from a 2.5V to 5.5V input voltage with excellent load and line regulation. The output voltage can be regulated as low as 0.6V.

Constant-on-time control provides fast transient response and eases loop stabilization. Faultcondition protections include cycle-by-cycle current limiting and thermal shutdown.

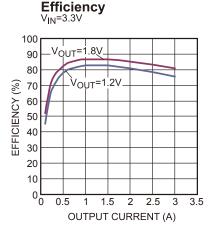
The MP2143H is available in small QFN-10 package and requires only a minimal number of readily-available standard external components.

The MP2143H is ideal for a wide range of applications including high-performance DSPs, FPGAs, and portable instruments.

FEATURES


- Wide 2.5V to 5.5V Operating Input Range
- Output Voltage as Low as 0.6V
- 100% Duty Cycle in Dropout
- Up to 3A Output Current
- 80m Ω and 40m Ω Internal Power MOSFET Switches
- Default 2.0MHz Switching Frequency
- EN and Power-Good for Power Sequencing
- Cycle-by-Cycle Over-Current Protection
- Auto Discharge at Power Off
- Short-Circuit Protect with Hiccup Mode
- Stable with Low-ESR Output Ceramic Capacitors
- Available in QFN-10 (2mmx3mm) Package

APPLICATIONS

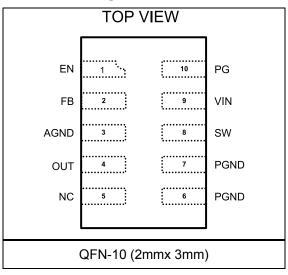

- Low Voltage I/O System Power
- Handheld/Battery-powered Systems
- Wireless/Networking Cards

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

ORDERING INFORMATION


Part Number*	Package	Top Marking
MP2143HGD	QFN-10(2mmx3mm)	See Below

* For Tape & Reel, add suffix –Z (e.g. MP2143HGD–Z).

TOP MARKING

AMT
YWW
LLL

AMT: product code of MP2143HGD; Y: year code; WW: week code: LLL: lot number;

PACKAGE REFERENCE

ABSOLUTE MAXIMUM RATINGS (1)

Supply Voltage V _{IN} 6V	V
V _{sw} -0.3V (-5V for <10ns) to V _{IN} +0.3V (10V fo	or
<10ns)	
All Other Pins0.3V to +6 V	V
Junction Temperature150°C	С
Lead Temperature260°C	
Continuous Power Dissipation $(T_A = 25^{\circ}C)^{(2)}$	
	V
Storage Temperature65°C to +150°C	

Recommended Operating Conditions (³⁾

Supply Voltage V _{IN}	2.5V to 5.5V
Output Voltage VOUT	0.6V to V _{IN} -0.5V
Operating Junction Temp.	(T _J)40°C to +125°C

Thermal Resistance ⁽⁴⁾ *θ_{JA} θ_{JC}* QFN-10 (2mmx3mm)......65...... 13... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 5V, T_J = -40°C to 125°C, Typical value is tested at T_J =+25°C. The limit over temperature is guaranteed by characterization, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units	
Feedback Voltage	V_{FB}	T _J = 25°C	591	600	609	mV	
r ceuback voltage	V FB	$T_{\rm J}$ = -40°C to 85°C ⁽⁵⁾	588	600	612		
Feedback Current	I_{FB}	V _{FB} = 0.63V		10		nA	
PFET Switch ON Resistance	R_{DSON_P}			80		mΩ	
NFET Switch ON Resistance	R _{DSON_N}			40		mΩ	
Switch Leakage		$\label{eq:VEN} \begin{array}{l} V_{\text{EN}} = 0V, V_{\text{IN}} = 5V, \\ V_{\text{SW}} = 0V \text{and} 5V, \\ T_{\text{J}} = 25^{\circ}\text{C} \end{array}$		0.1	2	μA	
PFET Current Limit		T _J = 25°C	4.2	4.8		А	
ON Time	t _{on}	V _{IN} =5V, V _{OUT} =1.2V		120		ns	
	LON	V _{IN} =3.6V, V _{OUT} =1.2V		166		115	
	f_s	V _{IN} =3.3V, V _{OUT} =1.2V, T _J =25°C	1800	2000			
Switching Frequency	f_s	V_{IN} =3.3V, V_{OUT} >=1.8V, T _J =-40°C to 125°C ⁽⁵⁾	1800		3000	kHz	
	f_s	V_{IN} =5V, V_{OUT} >=3.3V, T _J =-40°C to 125°C ⁽⁵⁾	1800		3000		
Minimum OFF Time	t _{MIN-OFF}			50		ns	
Soft-Start Time	t _{ss-on}	V _{OUT} =1.2V, 10% to 90%		1.3		ms	
Soft-Stop Time	t _{SS-OFF}	V _{OUT} =1.2V, 90% to 10%		1		ms	
Power-Good Upper Trip Threshold	PG_{H}	FB falling when PG turn to high voltage		110		%	
Power-Good Upper Trip Hysteresis	PG_{H_Hys}			5		%	
Power-Good Lower Trip Threshold	PG_L	FB Rising when PG turn to high voltage		90		%	
Power-Good Lower Trip Hysteresis	PG_{L_Hys}			5		%	
Power-Good Delay	PG_{D}			110		μs	
Power-Good Sink Current Capability	V_{PG-L}	Sink 1mA			400	mV	
Power-Good Logic High Voltage	V_{PG-H}	V _{IN} =5V, V _{FB} =0.6V	4.9			V	
Power-Good Internal Pull-Up Resistor	R_{PG}			500		kΩ	
Under-Voltage Lockout Threshold Rising			2.0	2.2	2.4	V	
Under-Voltage Lockout Threshold Hysteresis				150		mV	

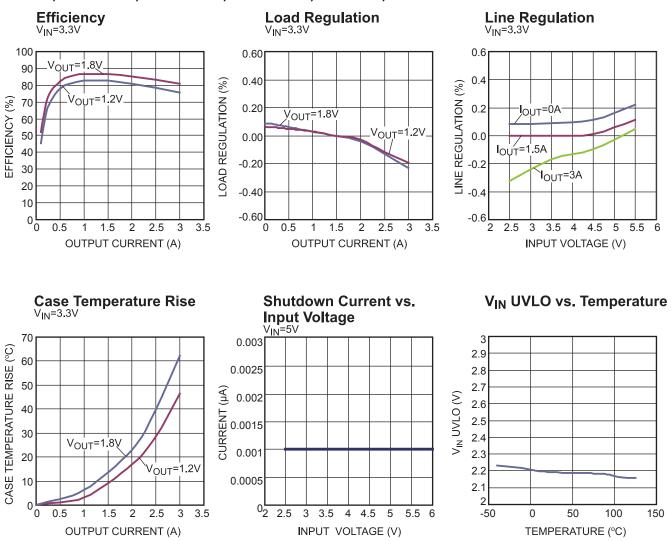
MP2143H Rev. 1.02 www.MonolithicPower.com 6/30/2016 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2016 MPS. All Rights Reserved.

ELECTRICAL CHARACTERISTICS

 V_{IN} = 5V, T_J = -40°C to 125°C, Typical value is tested at T_J =+25°C. The limit over temperature is guaranteed by characterization, unless otherwise noted.

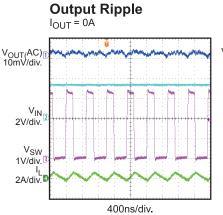
Parameter	Symbol	Condition	Min	Тур	Max	Units
EN Input Logic Low Voltage					0.4	V
EN Input Logic High Voltage			1.2			V
EN Input Current		V _{EN} =2V		2		μA
		V _{EN} =0V		0.1		μA
Supply Current (Shutdown)		V _{EN} =0V		0.1		μA
Thermal Shutdown (6)				170		°C
Thermal Hysteresis (6)				30		°C

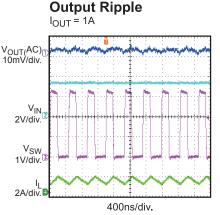
Notes:

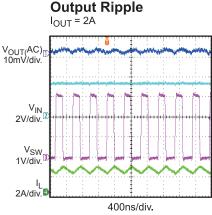

5) Guaranteed by characterization, not production tested.

6) Design Guarantee, no production test.

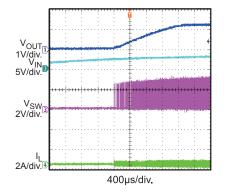
TYPICAL PERFORMANCE CHARACTERISTICS

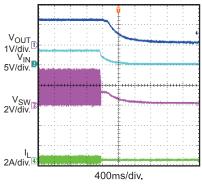

 $V_{IN} = 5V$, $V_{OUT} = 1.2V$, $L = 0.47 \mu$ H, $C_{OUT} = 22 \mu$ F, $T_A = 25^{\circ}$ C, unless otherwise noted.

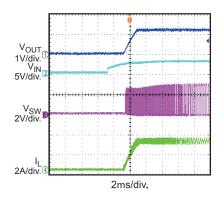


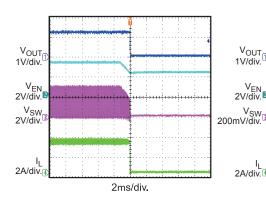


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

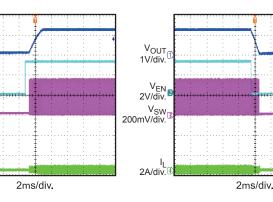

 V_{IN} = 3.3V, V_{OUT} = 1.2V, L = 0.47 μ H, C_{OUT} =22 μ F, T_A = 25°C, unless otherwise noted.




VIN Start Up without Load


VIN Shutdown without Load

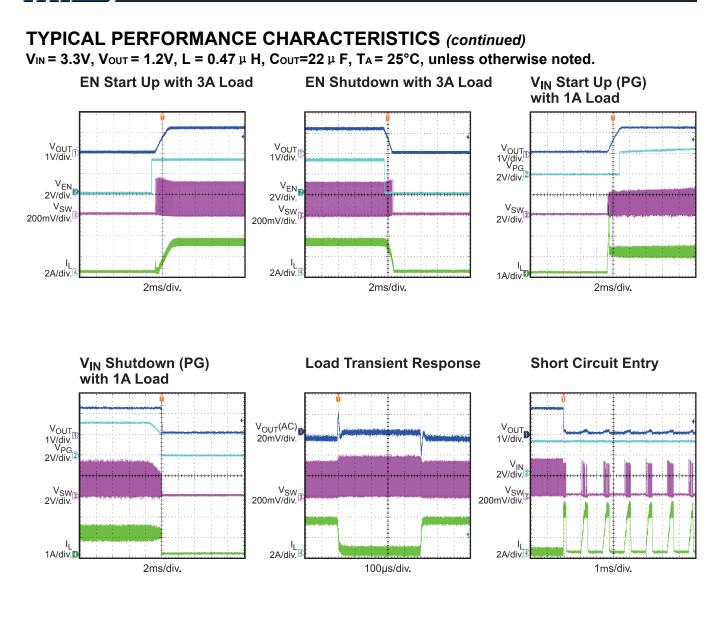
VIN Start Up with 3A Load



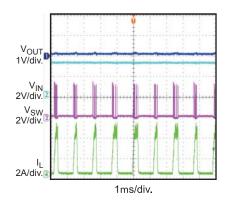
VIN Shutdown with 3A Load

EN Start Up without Load

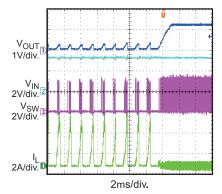
EN Shutdown without Load



MP2143H Rev. 1.02 www.MonolithicPower.com 6/30/2016 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2016 MPS. All Rights Reserved.


VOUT

h



Short Circuit Recovery

www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2016 MPS. All Rights Reserved.

PIN FUNCTIONS

QFN-10 Pin #	Name	Description	
1	EN	On/Off Control	
2	FB	Feedback pin. Connect an external resistor divider from the output to AGND to set the output voltage.	
3	AGND	Analog ground. Reference for the internal control circuit.	
4	OUT	Input Sense. For output voltage feedback.	
5	NC	Not Connected. It can be floated or connected to PGND for thermal.	
6, 7	PGND	Power Ground	
8	SW	Switch Output	
9	VIN	VIN Supply Voltage. The MP2143H operates from a 2.5V-to-5.5V unregulated input. (prevents large voltage spikes from appearing at the input.	
10	PG	Power-Good Indicator. The pin output is an open drain that connects to VIN by an internal pull-up resistor. PG is pulled up to VIN when the FB voltage is within \pm 10% of the regulation level. If FB voltage is out of that regulation range, it is LOW.	

FUNCTIONAL BLOCK DIAGRAM

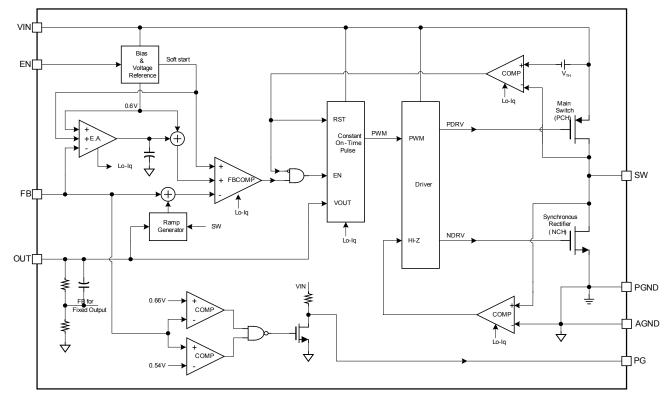


Figure 1: Functional Block Diagram

OPERATION

The MP2143H uses constant-on-time control with input-voltage feed-forward to stabilize the switching frequency over its full input range. It can achieve up to 3A continuous output current from a 2.5V to 5.5V input voltage with excellent load and line regulation. The output voltage can be regulated as low as 0.6V.

Constant-On-Time Control

When compared to fixed-frequency PWM control, constant on-time control offers a simpler control loop and faster transient response. By using input-voltage feed-forward, the MP2143H maintains a nearly constant switching frequency across the entire input and output voltage range. The switching pulse ON time can be estimated as:

 $T_{on}=V_{OUT}/V_{IN}\times 0.500 \mu s$

To prevent inductor current runaway during the load transient, the MP2143H has a fixed minimum OFF time of 50ns. However, this minimum OFF time limit does not affect the operation of the MP2143H in steady state in any way.

Enable

When the input voltage exceeds the undervoltage lockout (UVLO) threshold—typically 2.2V—the MP2143H is enabled by pulling the EN pin above 1.2V. Leaving the EN pin floating or grounded will disable the MP2143H. There is an internal $1M\Omega$ resistor from the EN pin to ground.

Soft-Start/Stop

MP2143H has a built-in soft-start that ramps up the output voltage at a constant slew rate that avoids overshooting at startup. The soft-start time is typically about 1.3ms. When disabled, the MP2143H ramps down the internal reference voltage to allow the load to linearly discharge the output.

Power Good Indicator

MP2143H has an open drain with $500k\Omega$ pull-up resistor pin for power good (PG) indication. When the FB pin is within $\pm 10\%$ of regulation voltage (0.6V), the PG pin is pulled up to VIN by the internal resistor. If the FB pin voltage is outside the $\pm 10\%$ window, the PG pin is pulled to ground by an internal MOSFET. The MOSFET has a maximum R_{dson} of less than 100Ω .

Current Limit

The MP2143H has a 4.8A current limit for the high side switch (HS-FET). When the HS-FET hits its current limit, the MP2143H enters hiccup mode until the current drops to prevent the inductor current from building and possibly damaging the components.

Short Circuit and Recovery

The MP2143H also enters short-circuit protection (SCP) mode when it hits the current limit, and tries to recover from the short circuit by entering hiccup mode. In SCP, the MP2143H disables the output power stage, discharges a soft-start capacitor, and then enacts a soft-start procedure. If the short-circuit condition still holds after soft-start ends, the MP2143H repeats this operation until the short circuit ceases and output rises back to regulation level.

APPLICATION INFORMATION COMPONENT SELECTION

Setting the Output Voltage

The external resistor divider sets the output voltage (see the Typical Application schematic on page 1). The feedback resistor R1 must account for both stability and dynamic response, and thus can not be too large or too small. Choose an R1 value between $120k\Omega$ and $200k\Omega$. R2 is then given by:

$$R2 = \frac{R1}{\frac{V_{out}}{0.6} - 1}$$

The feedback circuit is shown as Figure 2.

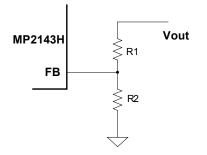


Figure 2: Feedback Network

Table 1 lists the recommended resistors values for common output voltages.

 Table 1: Resistor Values for Common Output

 Voltages

V _{OUT} (V)	R1 (kΩ)	R2 (kΩ)
1.0	200(1%)	300(1%)
1.2	200(1%)	200(1%)
1.8	200(1%)	100(1%)
2.5	200(1%)	63.2(1%)
3.3	200(1%)	44.2(1%)

Selecting the Inductor

A 0.47 μ H to 1.5 μ H inductor is recommended for most applications. For highest efficiency, chose an inductor with a DC resistance less than 15m Ω . For most designs, the inductance value can be derived from the following equation.

$$L_{1} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times \Delta I_{L} \times f_{OSC}}$$

Where ΔI_L is the inductor ripple current.

Choose an inductor current to be approximately 30% of the maximum load current. The maximum inductor peak current is:

$$I_{L(MAX)} = I_{LOAD} + \frac{\Delta I_{L}}{2}$$

Selecting the Input Capacitor

The input current to the step-down converter is discontinuous, and requires a capacitor to supply the AC current to the step-down converter while maintaining the DC input voltage. Use low-ESR capacitors for the best performance. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR values and small temperature coefficients. For most applications, a 10μ F capacitor is sufficient. For higher output voltage, use 47μ F to improve system stability.

Since the input capacitor absorbs the input switching current it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated by:

$$I_{C1} = I_{LOAD} \times \sqrt{\frac{V_{OUT}}{V_{IN}}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

The worse case condition occurs at V_{IN} = $2V_{\text{OUT}},$ where:

$$I_{C1} = \frac{I_{LOAD}}{2}$$

For simplification, choose an input capacitor whose RMS current rating greater than half of the maximum load current.

The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, use a small high-quality ceramic capacitor (0.1μ F), placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to prevent excessive voltage ripple at input. The input voltage ripple caused by capacitance can be estimated by:

$$\Delta V_{\text{IN}} = \frac{I_{\text{LOAD}}}{f_{\text{S}} \times C1} \times \frac{V_{\text{OUT}}}{V_{\text{IN}}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$

Selecting the Output Capacitor

The output capacitor (C2) maintains the output DC voltage. Use ceramic capacitors. Low-ESR capacitors keep the output voltage ripple low. The output voltage ripple can be estimated by:

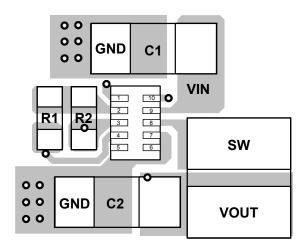
$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{S}} \times L_{1}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times \left(R_{\text{ESR}} + \frac{1}{8 \times f_{\text{S}} \times C2}\right)$$

Where L_1 is the inductor value and R_{ESR} is the equivalent series resistance of the output capacitor.

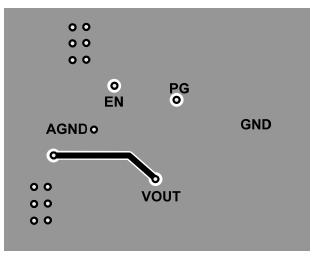
Using ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated by:

$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{8 \times f_{\text{S}}^{2} \times L_{1} \times C2} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right)$$

For tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated as:


$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_{\text{S}} \times L_{1}} \times \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \times R_{\text{ESR}}$$

The characteristics of the output capacitor also affect the stability of the regulation system.

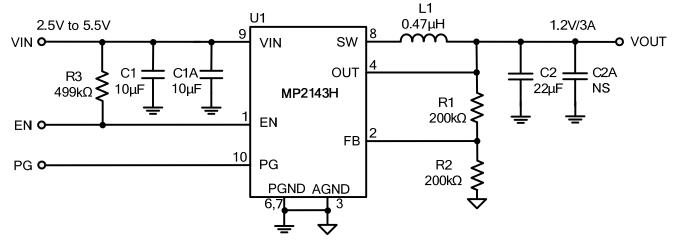
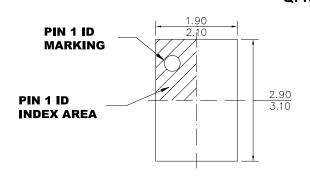

PCB Recommendation of MP2143H

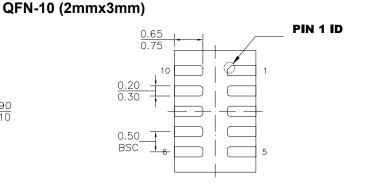
Proper layout of the switching power supplies is very important, and sometimes critical for proper operation. For high-frequency switching converters, poor layout could lead to poor line or load regulation and stability issues.

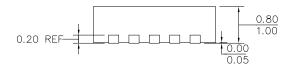
The high current paths (GND, VIN, and SW) should be placed very close to the device using short, direct, and wide traces. The input capacitor needs to be as close as possible to the VIN and GND pins. The external feedback resistors should be placed next to the FB pin. Keep the switching node SW short and away from the feedback network.

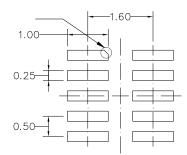
Bottom Layer Figure 3: Layout Recommendation

TYPICAL APPLICATION CIRCUITS


Figure 4: MP2143H Typical Application Circuit


PACKAGE INFORMATION


TOP VIEW

BOTTOM VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN

NOTE:

 ALL DIMENSIONS ARE IN MILLIMETERS.
 EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
 LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.
 JEDEC REFERENCE IS MO-220.
 DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.