

MP5120DJ-LF-Z Datasheet

www.digi-electronics.com

Ma

DiGi Electronics Part Number	MP5120DJ-LF-Z-DG
Manufacturer	Monolithic Power Systems Inc.
Aanufacturer Product Number	MP5120DJ-LF-Z
Description	IC OPAMP GP 1 CIRCUIT TSOT23-5
Detailed Description	General Purpose Amplifier 1 Circui T-23-5

it Rail-to-Rail TSO

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MP5120DJ-LF-Z	Monolithic Power Systems Inc.
Series:	Product Status:
	Active
Amplifier Type:	Number of Circuits:
General Purpose	1
Output Type:	Slew Rate:
Rail-to-Rail	45V/µs
Gain Bandwidth Product:	-3db Bandwidth:
14 MHz	20 MHz
Current - Input Bias:	Voltage - Input Offset:
500 nA	2 mV
Current - Supply:	Current - Output / Channel:
1.6mA	130 mA
Voltage - Supply Span (Min):	Voltage - Supply Span (Max):
3.2 V	18 V
Operating Temperature:	Mounting Type:
-40°C ~ 85°C	Surface Mount
Package / Case:	Supplier Device Package:
SOT-23-5 Thin, TSOT-23-5	TSOT-23-5

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.33.0001	

The Future of Analog IC Technology

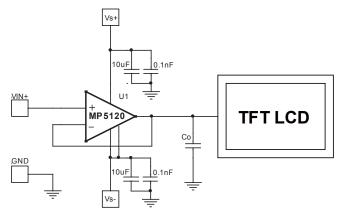
DESCRIPTION

The MP5120 (single), MP5220 (dual), and MP5420 (quad) are high-speed, high-voltage rail-to-rail input-output amplifiers for use as voltage reference buffers in Thin Film Transistor Liquid Crystal Displays (TFT-LCDs). The MP5120 family provides excellent overall performance and versatility. The 20MHz –3dB bandwidth and $45V/\mu s$ slew rate make these amplifier suitable for many portable applications.

The MP5120, MP5220, and MP5240 are designed to operate at supply voltages as low as 3.2V and up to 18V at 1.6mA of supply current per amplifier. The input can swing 0.5V below the negative rail and 0.5V above the positive rail. The output can swing within 100mV of each rail.

The MP5420 quad channel is available in the space-saving 14-pin TSSOP package. The MP5220 dual channel is available in the 8-pin MSOP package and the MP5120 single channel is available in 5-pin TSOT package. All feature a standard operational amplifier pin out.

FEATURES

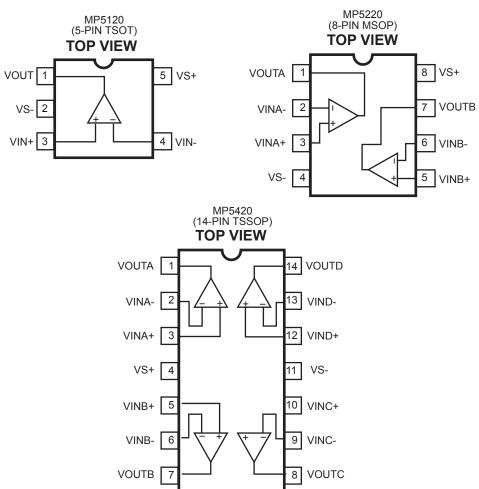

- Supply Operation: +/-9V
- 20MHz –3dB Bandwidth
- 45V/µs Slew Rate
- Supply Current (per amplifier)1.6mA
- Unity-Gain Stable
- Output Swing within 100mV of Supply Rail
- Rail-to-Rail Input Capability
- High Output Drive Capability (50mA)
- MP5120 Available in TSOT-5
- MP5220 Available in MSOP-8
- MP5420 Available in TSSOP14

APPLICATIONS

- TFT-LCD Drive Circuits
- Electronic Notebooks
- Electronic Games
- Touch-Screen Displays
- Personal Communication Devices
- Personal Digital Assistants (PDA)
- Portable Instrumentation
- Sampling ADC Amplifiers
- Wireless LAN
- Office Automation
- Active Filters
- ADC/DAC Buffer

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION


MP5120_MP5220_MP5420 -HIGH SPEED, +/-9V, RAIL-TO-RAIL INPUT-OUTPUT OP AMPS

ORDERING INFORMATION

Part Number*	Package	Top Marking	Free Air Temperature (T _A)
MP5120DJ	TSOT	8F	
MP5220DK	MSOP	5220D	–40°C to +85°C
MP5420DM	TSSOP	M5420DM	

* For Tape & Reel, add suffix –Z (e.g. MP5120DJ–Z).

For RoHS Compliant packaging, add suffix -LF (e.g. MP5120DJ-LF-Z)

PACKAGE INFORMATION

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾ $(T_A=25^{\circ}C)$

Supply Voltage between V_{s+} and V_{s-}

	–0.3V to +22V
Input Voltage	V _{s-} - 0.5V, V _{s+} +0.5V

Maximum Continuous Output Current

	50mA
Maximum Die Temperature	
Storage Temperature	-60°C to +150°C
Ambient Operating Temp	
Power Dissipation	See Curves ⁽²⁾

Recommended Operating Conditions ⁽³⁾

Power Supply Operation (V_{s+} to V_{s-})

	3.2V to +18V
Operating Junct. Temp (T _J)	

Thermal Resistance ⁽⁴⁾	$\boldsymbol{\theta}_{JA}$	$\boldsymbol{\theta}_{JC}$
MSOP	150	65 °C/W
TSOT	220	110 °C/W
TSSOT	40 .	6 °C/W

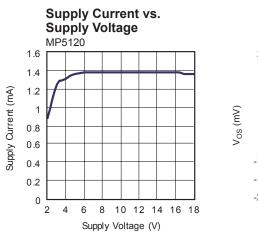
Notes:

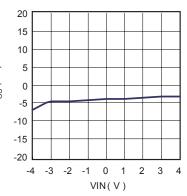
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-toambient thermal resistance θ_{JA} , and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX)-T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

¹⁾ Exceeding these ratings may damage the device.

MP5120_MP5220_MP5420 -HIGH SPEED, +/-9V, RAIL-TO-RAIL INPUT-OUTPUT OP AMPS

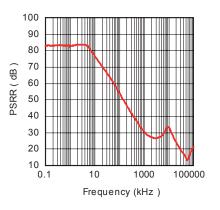
ELECTRICAL CHARACTERISTICS

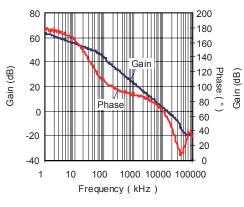

V_{s+} = +5V, V_{s-} = -5V, R_L = 10k Ω and C_L = 10pF, T_A =T_J= 25°C, unless otherwise noted.


Parameter	Symbol	Condition	Min	Тур	Max	Units
INPUT CHARACTERISTICS		·				
Input Offset Voltage	V _{os}	V _{CM} =5V		2	20	mV
Average Offset Voltage Drift ⁽³⁾	TCV _{OS}			5		µ/°C
Input Bias Current	I _B	V _{CM} =5V		0.5	2	μA
Input Impedance	R _{IN}			1		GΩ
Input Capacitance	C _{IN}			1.35		pF
Common-Mode Input Range	CMIR		-5.5		+5.5	V
Common-Mode Rejection Ratio	CMRR	for V_{IN} from -5.5V to +5.5V	60	85		dB
Open Loop Gain	A _{VOL}	$-4.5V \le V_{OUT} \le +4.5V$	50	60	≤	dB
OUTPUT CHARACTERISTICS	5					
Output Swing Low	V _{OL}	I _L = -5mA		-4.95		V
Output Swing High	V _{OH}	I _L = -5mA		4.82		V
Short Circuit Current	I _{SC} Sourcing Sinking	Sourcing		70		mA
			130		110 (
POWER SUPPLY PERFORM	NCE					
Power Supply Rejection Ratio	PSRR	V_{S} is moved from ±2.25V to ±7.75V	70	95		dB
Supply Current (Per Amplifier)	l _S	No load		1.6		mA
DYNAMIC PERFORMANCE						•
Slew Rate (Rise/Fall)	SR	-4.0V ≤ V _{OUT} ≤ +4.0V, 20% to 80%		45		V/µs
Settling to +0.1% (A_V = +1)	ts	$(AV = +1), V_0 = 2V \text{ step}$		500		ns
-3dB Bandwidth	BW	$R_L = 10k\Omega, C_L = 10pF$		20		MHz
Gain-Bandwidth Product	GBWP	R_L = 10k Ω , C_L = 10pF		14		MHz
Phase Margin	PM	$R_L = 10k\Omega, C_L = 10pF$		50		
Channel Separation	CS	f = 5MHz (MP5220 & MP5420 only)		70		dB

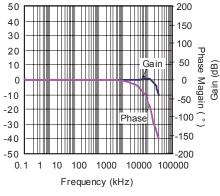
MP5120_MP5220_MP5420 –HIGH SPEED, +/-9V, RAIL-TO-RAIL INPUT-OUTPUT OP AMPS

TYPICAL PERFORMANCE CHARACTERISTICS

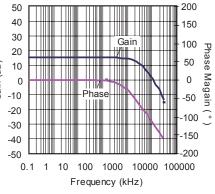

 $V_{S+}=5V$, $V_{S-}=-5V$, $R_L=10K\Omega$, $C_L=12pF$, $T_A=25^{\circ}C$, unless otherwise noted.

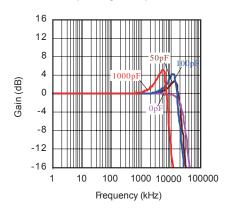

V_{OS} vs. V_{IN}

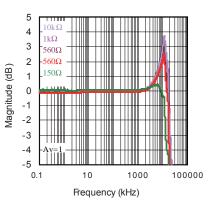
PSRR vs. Frequency

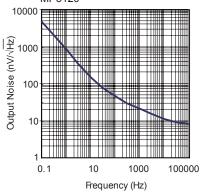


Open Loop

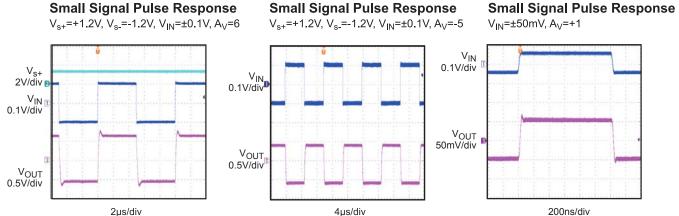

크


Closed Loop Av=1

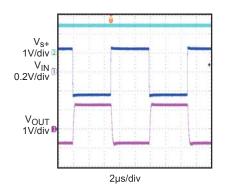

Closed Loop Av=2


Frequency Response vs. C_L

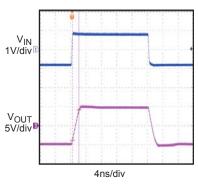
Frequency Response vs. R_L


Output Noise vs. Frequency MP5120

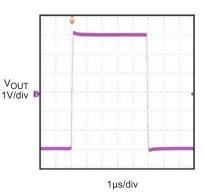
MP5120_MP5220_MP5420 -HIGH SPEED, +/-9V, RAIL-TO-RAIL INPUT-OUTPUT OP AMPS

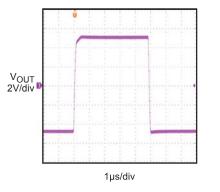

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

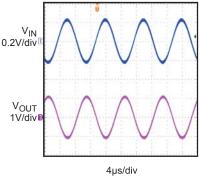
V_{S+}=5V, V_{S-}=-5V, R_L=10KΩ, C_L=12pF, T_A=25°C, unless otherwise noted.

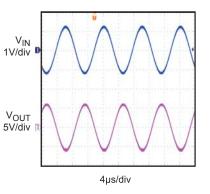


200ns/div


Rail to Rail Operation Response V_{s+}=+1.2V, V_s=-1.2V, V_{IN}=±0.24V, A_V=-5


Small Signal Pulse Response V_{IN}=±0.8V, A_V=+6


Large Signal Pulse Response V_{IN}=±3V, A_V=+1



Rail to Rail Output Response V_{s+}=+1.2V, V_s=-1.2V, V_{IN}=±0.22V, A_V=-5

OPERATION DESCRIPTION

The MP5120/MP5220/MP5420 are high-speed, high slew rate, rail-to-rail input-output operational amplifiers. These devices can operate up to 50mA output current and 20MHz bandwidth.

INPUT

The MP5X21 can operate with inputs from rail to rail. It does this through the use of two differential pairs. A traditional PNP differential pair is used from 0.5V below the negative rail to 1V below the positive rail. At that point the input is switched to a NPN differential pair to operate up to 0.5V above the positive rail. The transition from one input differential pair to the other can cause distortion. Inputs near the rails can also cause distortion and degradation of other specifications.

OUTPUT

Current Rating

The MP5X21 can sink or source 50mA. It can provide high values of peak current, and much reduced value of average current. When the output voltages are near the rails the ability to provide current will be reduced.

Output Power

Make sure that the rms power is such that the die junction temperature will remain below 125°C.

Power Requirements

The MP5x20 family operates from a voltage supply, of \pm Vs and ground, or from a Vs split supply. Dual supply range is \pm 1.6V to \pm 9.0V.

PSRR and Noise

A common figure of merit is the PSRR (Power Supply Rejection Ratio). The PSRR is a measure of how much noise gets from the supply rails into the output. Notice that the PSRR falls with increasing frequency. In order to have good PSRR the ripple voltages and frequencies of the systems switching power supplies should be measured. If the PSRR is not acceptable, inductors can be inserted in series with the power supply rails to provide improved PSRR. Also make sure there are no transients created on the power supply lines when the MP5X21 load current changes suddenly. This can damage the part.

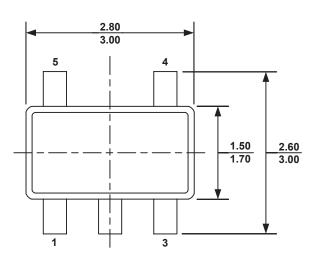
Transients

In addition to the ripple and noise on the power supplies, there are also transient voltage changes. This can be caused by another device on the same power supply suddenly drawing current or suddenly stopping a current draw. The design engineer should insure that there are no damaging transients induced on the power supply lines when the op amp suddenly changes current delivery.

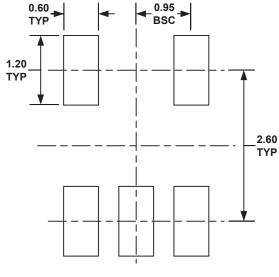
LAYOUT

Ground Plane

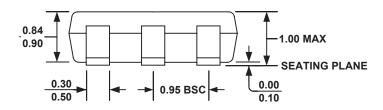
Connect the opamp to a ground plane rather than ground traces for very low impedance. If this is not possible then make the ground traces as fat and short as possible

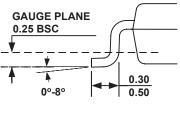

Decoupling

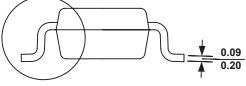
High performance devices such as the MP5X21, with high slew rates and high currents, need large decoupling capacitors. These should be placed as close to the supply pins as possible. Use ground and power planes to make these decoupling capacitors as effective as possible. If that is not realistic then make the ground and power traces as thick and short as possible. **TSOT23-5**



MP5120_MP5220_MP5420 -HIGH SPEED, +/-9V, RAIL-TO-RAIL INPUT-OUTPUT OP AMPS


PACKAGE INFORMATION


TOP VIEW

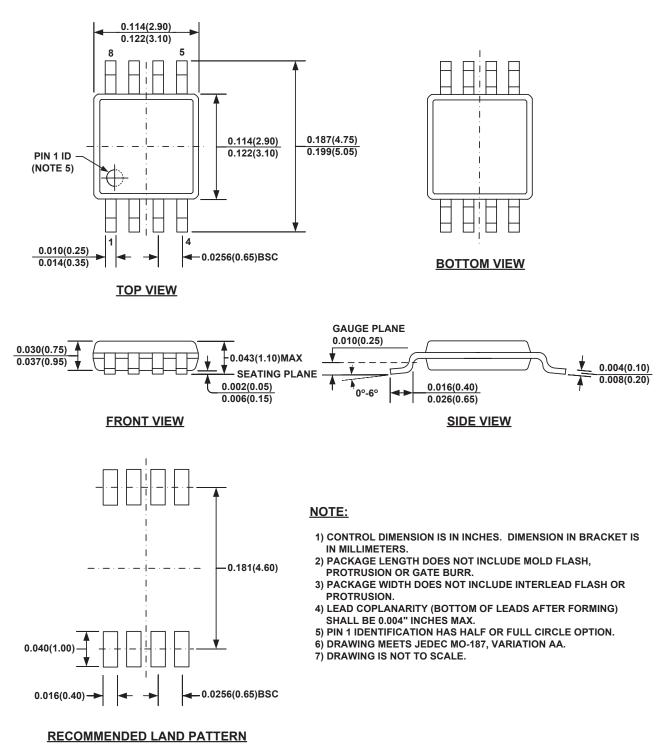

RECOMMENDED LAND PATTERN

FRONT VIEW

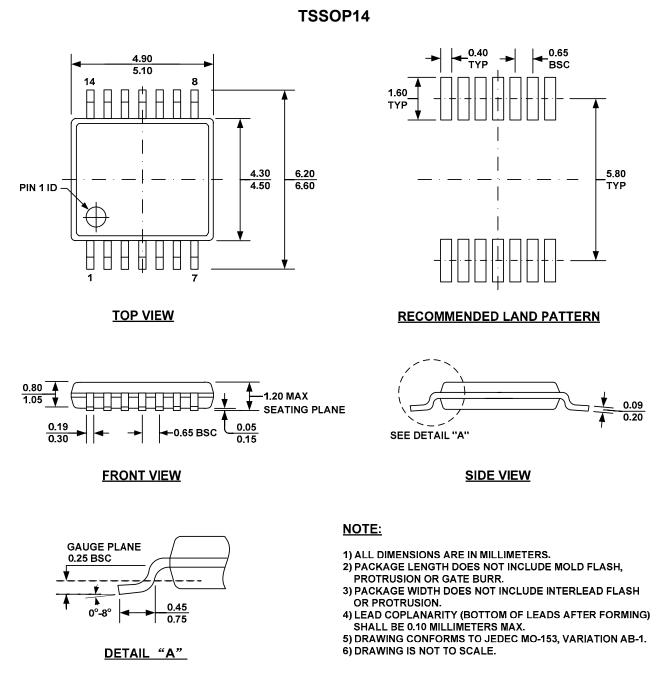
DETAIL A

SEE DETAIL "A"

SIDE VIEW


NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH **OR PROTRUSION.**
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING CONFORMS TO JEDEC MO-193, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.


PACKAGE INFORMATION

MSOP8

PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.