

74AUP2G00GF,115 Datasheet

DiGi Electronics Part Number Manufacturer Manufacturer Product Number Description Detailed Description

er 74AUP2G00GF,115-DG er Nexperia USA Inc. er 74AUP2G00GF,115 in IC GATE NAND 2CH 2-INP 8XSON NAND Gate IC 2 Channel 8-XSON (1.35x1)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:					
74AUP2G00GF,115	Nexperia USA Inc.					
Series:	Product Status:					
74AUP	Obsolete					
Logic Type:	Number of Circuits:					
NAND Gate	2					
Number of Inputs:	Features:					
2						
Voltage - Supply:	Current - Quiescent (Max):					
0.8V ~ 3.6V	500 nA					
Current - Output High, Low:	Input Logic Level - Low:					
4mA, 4mA	0.7V ~ 0.9V					
Input Logic Level - High:	Max Propagation Delay @ V, Max CL:					
1.6V ~ 2V	6.5ns @ 3.3V, 30pF					
Operating Temperature:	Mounting Type:					
-40°C ~ 125°C	Surface Mount					
Supplier Device Package:	Package / Case:					
8-XSON (1.35x1)	8-XFDFN					
Base Product Number:						
74AUP2G00						

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

1. General description

The 74AUP2G00 provides dual 2-input NAND function.

Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

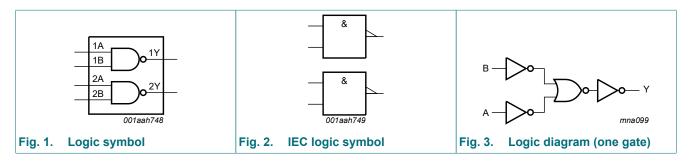
This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- Low static power consumption; I_{CC} = 0.9 µA (maximum)
- Latch-up performance exceeds 100 mA per JESD78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial power-down mode operation
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 3A exceeds 5000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

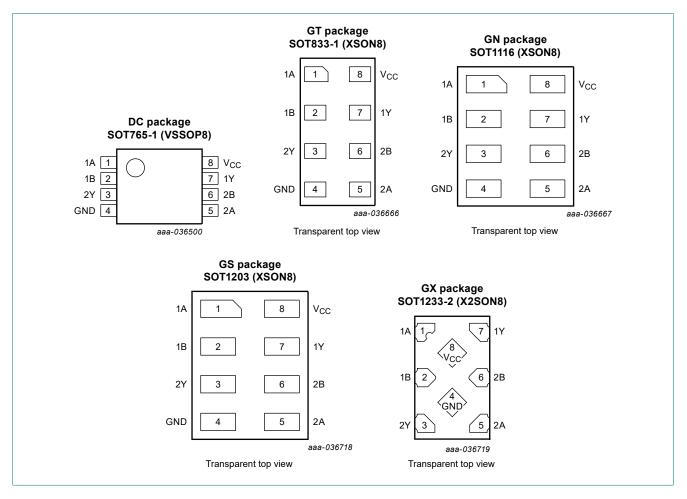
ne<mark>x</mark>peria

3. Ordering information


Type number	Package							
	Temperature range Name Description N							
74AUP2G00DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	<u>SOT765-1</u>				
74AUP2G00GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 × 1.95 × 0.5 mm	<u>SOT833-1</u>				
74AUP2G00GN	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 × 1.0 × 0.35 mm	<u>SOT1116</u>				
74AUP2G00GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 × 1.0 × 0.35 mm	<u>SOT1203</u>				
74AUP2G00GX	-40 °C to +125 °C	X2SON8	plastic thermal enhanced extremely thin small outline package; no leads; 8 terminals; body 1.35 × 0.8 × 0.32 mm	SOT1233-2				

4. Marking

Table 2. Marking codes					
Type number	Marking code[1]				
74AUP2G00DC	p00				
74AUP2G00GT	p00				
74AUP2G00GN	pA				
74AUP2G00GS	pA				
74AUP2G00GX	pA				


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.2. Pin description

Table 3. Pin description Pin Symbol Description 1A, 2A 1, 5 data input 1B, 2B 2, 6 data input GND 4 ground (0 V) 1Y, 2Y 7, 3 data output 8 V_{CC} supply voltage

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level.

Input	Output	
nA	nB	nY
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
VI	input voltage		[1]	-0.5	+4.6	V
Vo	output voltage	Active mode and Power-down mode	[1]	-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
lo	output current	$V_{O} = 0 V \text{ to } V_{CC}$		-	±20	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C				
		SOT765-1 (VSSOP8) SOT833-1 (XSON8) SOT1116 (XSON8) SOT1203 (XSON8)	[2]	-	250	mW
		SOT1233-2 (X2SON8)	[3]	-	300	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT765-1 (VSSOP8) package: P_{tot} derates linearly with 4.9 mW/K above 99 °C.
 For SOT833-1 (XSON8) package: P_{tot} derates linearly with 3.1 mW/K above 68 °C.
 For SOT1116 (XSON8) package: P_{tot} derates linearly with 4.2 mW/K above 90 °C.
 For SOT1203 (XSON8) package: P_{tot} derates linearly with 3.6 mW/K above 81 °C.

[3] For SOT1233-2 (X2SON8) package: Ptot derates linearly with 7.7 mW/K above 118 °C.

9. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 0.8 V to 3.6 V	-	200	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = 2	5 °C				1	
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	$0.70 \times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V	0.65 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	0.30 × V _{CC}	V
		V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	2.05	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.72	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I_0 = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.44	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.31	V
		I_0 = 4.0 mA; V_{CC} = 3.0 V	-	-	0.44	V
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μA

74AUP2G00

74AUP2G00

Low-power dual 2-input NAND gate

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.2	μA
l _{cc}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.5	μA
∆l _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; $ [1] $V_{CC} = 3.3 \text{ V}; \text{ per pin}$	-	-	40	μA
CI	input capacitance	V_{CC} = 0 V to 3.6 V; V _I = GND or V _{CC}	-	0.8	-	pF
Co	output capacitance	$V_{O} = GND; V_{CC} = 0 V$	-	1.7	-	pF
T _{amb} = -4	0 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	0.70 × V _{CC}	-	-	V
		V _{CC} = 0.9 V to 1.95 V	0.65 × V _{CC}	-	-	V
Δl _{OFF} ac l _{CC} si Δl _{CC} ac C ₁ in C ₀ oi Tamb -40° V _{IH} H V _{IL} L V _{OH} H V _{OL} L V _{OL} L I ₁ in I _{OFF} p<		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
$ \begin{split} \hline \Delta_{OFF} & \mbox{additional power-off} & \mbox{leakage current} & \mbox{V}_{CC} = 0 \ V to 3.6 \ V; \\ \mbox{V}_{CC} = 0 \ V to 0.2 \ V \\ \mbox{leakage current} & \mbox{V}_{C} = 0 \ V to 3.6 \ V; \\ \mbox{V}_{CC} = 0 \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V to 3.6 \ V; \\ \mbox{Loc} = 0 \ X \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ X \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ X \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ V \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ S \ S \ S \ V; \\ \mbox{Loc} = 0 \ V \ S \ S \ S \ V; \\ \mbox{Loc} = 0 \ S \ V \ S \ S \ S \ V; \\ \mbox{Loc} = 0 \ S \ V \ S \ S \ S \ S \ S \ S \ S \ S$	-	-	0.30 × V _{CC}	V		
		V _{CC} = 0.9 V to 1.95 V	-	-	0.35 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
C1 i C0 c Tamb = -40 VIH I VIH I VIL I VOH I		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.7 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.03	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.97	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.85	-	-	V
V _{IH} I V _{IL} I V _{OH} I V _{OL} I I ₁ i		I _O = -2.7 mA; V _{CC} = 3.0 V	2.67	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.55	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH}$ or V_{IL}				
		I _O = 20 μA; V _{CC} = 0.8 V to 3.6 V	_	-	0.1	V
CO G Tamb = -40 VIH H VIH H VIL L VOH H OFF H AlOFF H ICC S		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	_	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.33	V
			-	-	0.45	V
			_	-	0.33	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.45	V
l _l	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	_	-	±0.5	μA
	power-off leakage current		-	-	±0.5	μA
	additional power-off	V_{I} or V_{O} = 0 V to 3.6 V;	-	-	±0.6	μA
I _{CC}	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$	-	-	0.9	μA
ΔI _{CC}	additional supply current		-	-	50	μA

74AUP2G00

Low-power dual 2-input NAND gate

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +125 °C	· · · · · ·			1	
VIH	HIGH-level input voltage	V _{CC} = 0.8 V	0.75 × V _{CC}	-	-	V
		V _{CC} = 0.9 V to 1.95 V	$0.70 \times V_{CC}$	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	0.25 × V _{CC}	V
		V _{CC} = 0.9 V to 1.95 V	-	-	0.30 × V _{CC}	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	V _I = V _{IH} or V _{IL}				
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	$0.6 \times V_{CC}$	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	0.93	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.77	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.67	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.40	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_0 = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.33 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.36	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.36	V
I ₁ inpu I _{OFF} pow		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V
I _I	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.75	μA
I _{OFF}	power-off leakage current			±0.75	μA	
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.75	μA
l _{cc}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ [1] $V_{CC} = 3.3 \text{ V}; \text{ per pin}$	-	-	75	μA

[1] One input at V_{CC} - 0.6 V, other input at V_{CC} or GND.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 5.

Symbol	Parameter	Conditions	T,	_{amb} = 25 °	°C	T _{an} -40 °C te	_{1b} = 0 +85 °C	T _{ar} -40 °C to	_{nb} = o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 5 p	F									
t _{pd}	propagation	nA, nB to nY; see Fig. 4 [2]								
	delay	V _{CC} = 0.8 V	-	17.5	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.5	5.3	11.0	2.1	12.2	2.1	13.5	ns
		V _{CC} = 1.4 V to 1.6 V	2.0	3.8	6.8	1.8	7.8	1.8	8.6	ns
		V _{CC} = 1.65 V to 1.95 V	1.6	3.1	5.3	1.4	6.2	1.4	6.9	ns
		V _{CC} = 2.3 V to 2.7 V	1.3	2.5	4.0	1.1	4.7	1.1	5.2	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	2.2	3.6	1.0	4.2	1.0	4.7	ns
C _L = 10	pF								1	
t _{pd}	propagation	nA, nB to nY; see Fig. 4 [2]								
	delay	V _{CC} = 0.8 V	-	21.0	-	-	-	-	-	ns
	V _{CC} = 1.1 V to 1.3 V	2.4	6.1	13.0	2.2	14.4	2.2	15.9	ns	
		V _{CC} = 1.4 V to 1.6 V	2.4	4.4	7.9	2.2	9.2	2.2	10.2	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	3.7	6.2	1.9	7.3	1.9	8.1	ns
		V _{CC} = 2.3 V to 2.7 V	1.4	3.0	4.7	1.3	5.6	1.3	6.2	ns
		V _{CC} = 3.0 V to 3.6 V	1.3	2.8	4.3	1.2	4.9	1.2	5.4	ns
C _L = 15	pF									
t _{pd}	propagation	nA, nB to nY; see Fig. 4 [2]								
	delay	V _{CC} = 0.8 V	-	24.5	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.4	6.9	14.8	3.1	16.5	3.1	18.2	ns
		V _{CC} = 1.4 V to 1.6 V	2.8	5.0	8.9	2.5	10.5	2.5	11.6	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	4.1	7.0	2.0	8.3	2.0	9.2	ns
		V _{CC} = 2.3 V to 2.7 V	1.7	3.5	5.3	1.5	6.4	1.5	7.1	ns
		V _{CC} = 3.0 V to 3.6 V	1.6	3.2	4.9	1.4	5.7	1.4	6.3	ns
C _L = 30	pF								-	
t _{pd}	propagation	nA, nB to nY; see Fig. 4 [2]								
	delay	V _{CC} = 0.8 V	-	34.8	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.6	9.2	20.1	4.1	22.6	4.1	24.9	ns
		V _{CC} = 1.4 V to 1.6 V	3.0	6.5	11.8	2.9	14.0	2.9	15.4	ns
		V _{CC} = 1.65 V to 1.95 V	2.6	5.4	9.3	2.3	11.1	2.3	12.3	ns
		V _{CC} = 2.3 V to 2.7 V	2.4	4.6	7.1	2.1	8.5	2.1	9.4	ns
		V _{CC} = 3.0 V to 3.6 V	2.3	4.3	6.5	2.1	7.6	2.1	8.4	ns

74AUP2G00

Low-power dual 2-input NAND gate

Symbol	Parameter	Parameter Conditions		T _{amb} = 25 °C		T _{amb} = -40 °C to +85 °C		T _{amb} = -40 °C to +125 °C		Unit	
			Min	Typ[1]	Мах	Min	Max	Min	Max		
C _L = 5 p	F, 10 pF, 15 p	F and 30 pF									
C _{PD}	power dissipation capacitance	$ f_i = 1 \text{ MHz}; $ [3] $ V_I = \text{GND to } V_{\text{CC}} $									
		V _{CC} = 0.8 V	-	2.8	-	-	-	-	-	pF	
		V _{CC} = 1.1 V to 1.3 V	-	2.9	-	-	-	-	-	pF	
		V _{CC} = 1.4 V to 1.6 V	-	3.0	-	-	-	-	-	pF	
		V _{CC} = 1.65 V to 1.95 V	-	3.0	-	-	-	-	-	pF	
		V _{CC} = 2.3 V to 2.7 V	-	3.4	-	-	-	-	-	pF	
		V _{CC} = 3.0 V to 3.6 V	-	3.9	-	-	-	-	-	pF	

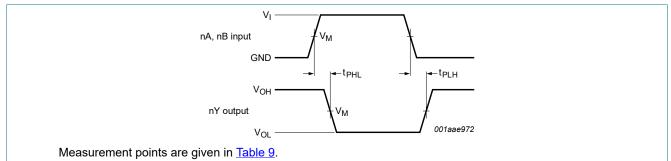
All typical values are measured at nominal V_{CC}. [1]

[2]

 t_{Pd} is the same as t_{PLH} and t_{PHL} . C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). [3]

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;


 f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of outputs.

11.1. Waveform and test circuit

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

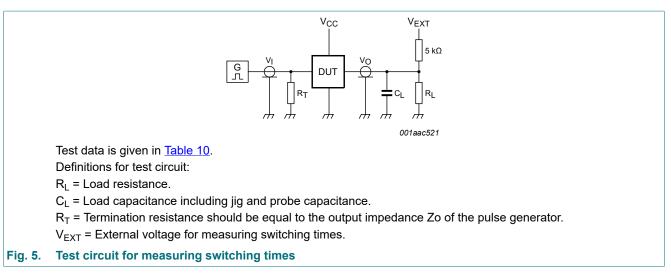

Fig. 4. The data input (nA or nB) to output (nY) propagation delays

Table 9. Measurement points

Supply voltage	Output	Input		
V _{cc}	V _M	V _M	VI	$t_r = t_f$
0.8 V to 3.6 V	0.5 × V _{CC}	0.5 × V _{CC}	V _{CC}	≤ 3.0 ns

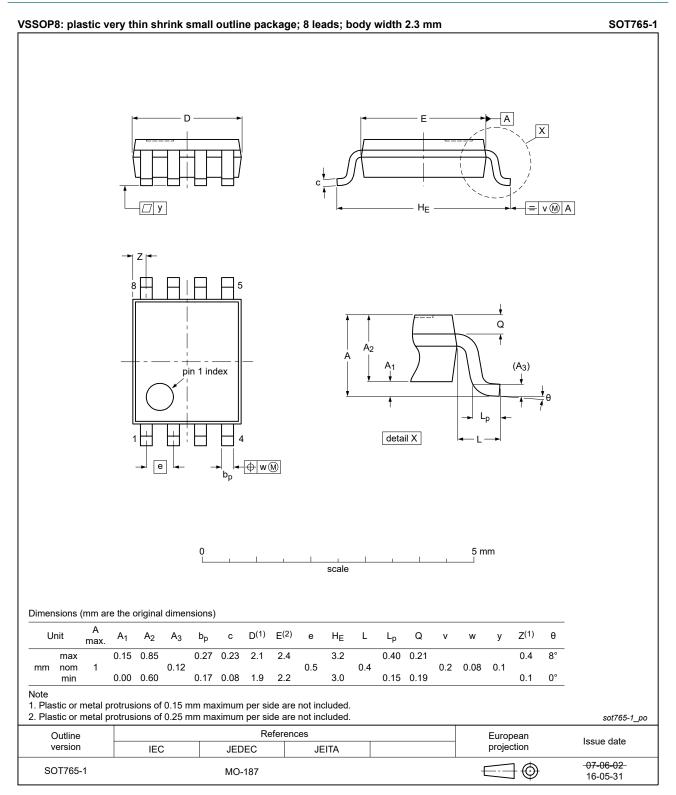
74AUP2G00

Low-power dual 2-input NAND gate

Table 10. Test data

Supply voltage	Load		V _{EXT}		
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times $R_L = 5 k\Omega$.


For measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

74AUP2G00

74AUP2G00

Low-power dual 2-input NAND gate

12. Package outline

Fig. 6. Package outline SOT765-1 (VSSOP8)

74AUP2G00

74AUP2G00

Low-power dual 2-input NAND gate

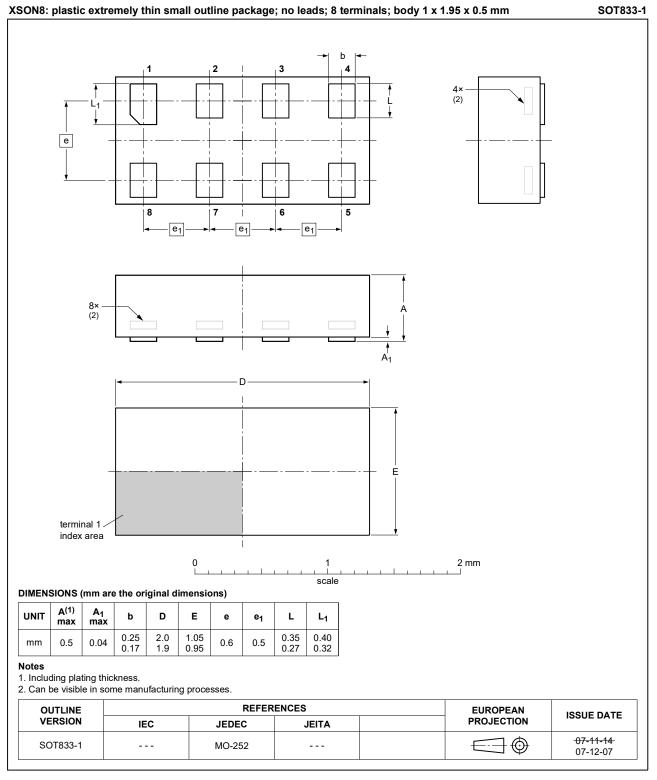
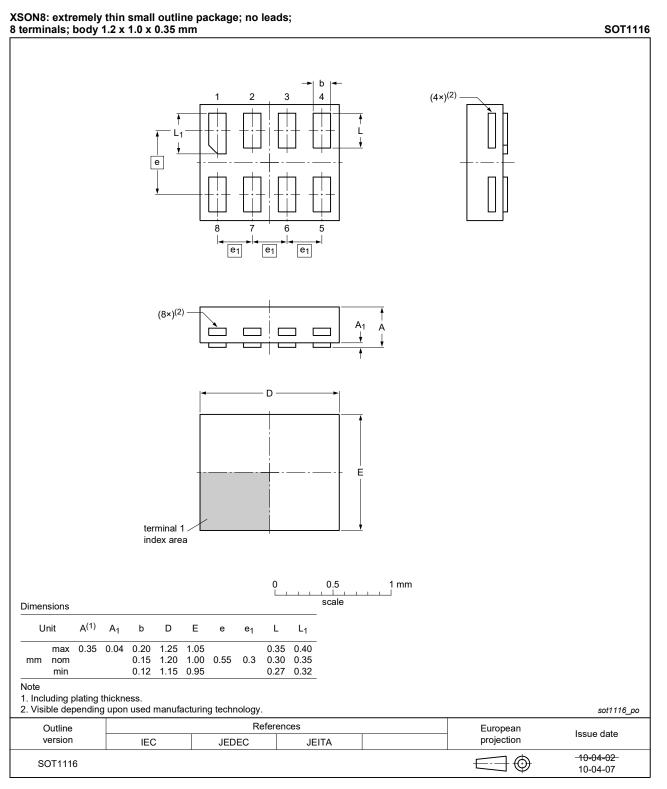



Fig. 7. Package outline SOT833-1 (XSON8)

74AUP2G00

Low-power dual 2-input NAND gate

74AUP2G00

Low-power dual 2-input NAND gate

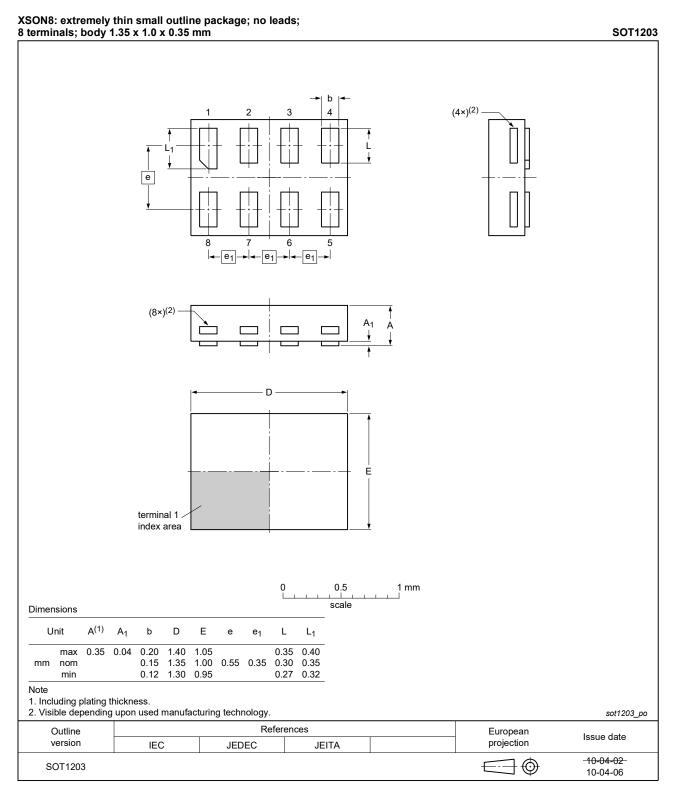
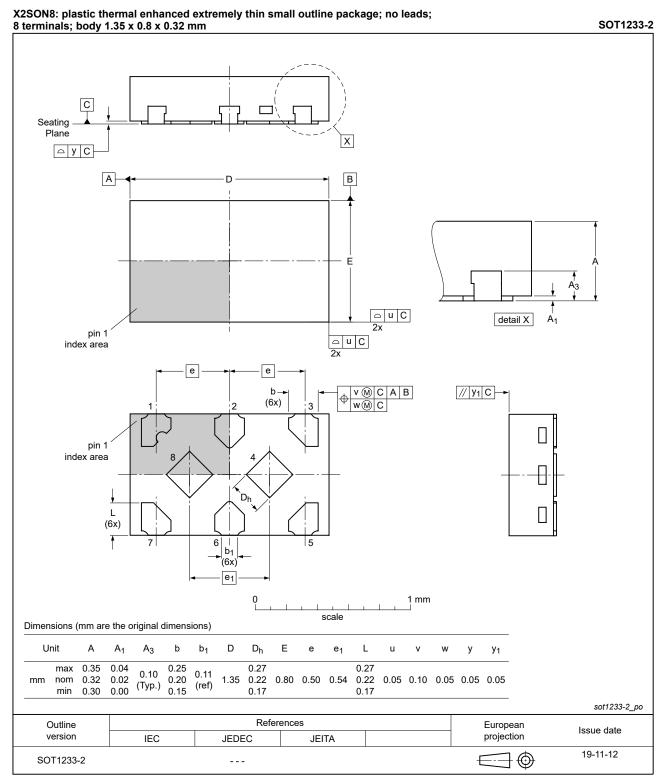



Fig. 9. Package outline SOT1203 (XSON8)

74AUP2G00

Low-power dual 2-input NAND gate

13. Abbreviations

Table 11. Abbreviations		
Acronym	Description	
ANSI	American National Standards Institute	
CDM	Charged Device Model	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
ESDA	ElectroStatic Discharge Association	
НВМ	Human Body Model	
JEDEC	Joint Electron Device Engineering Council	

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74AUP2G00 v.14	20240812	Product data sheet	-	74AUP2G00 v.13		
Modifications:	Type numbe	Type number 74AUP2G00GM (SOT902-2/XQFN8) removed.				
74AUP2G00 v.13	20240416	Product data sheet	-	74AUP2G00 v.12		
Modifications:	Type numbe	Type number 74AUP2G00GF (SOT1089/XSON8) removed.				
74AUP2G00 v.12	20230714	Product data sheet	-	74AUP2G00 v.11		
Modifications:	• <u>Section 2</u> : E	<u>Section 2</u> : ESD specification updated according to the latest JEDEC standard.				
74AUP2G00 v.11	20220609	Product data sheet	-	74AUP2G00 v.10		
Modifications:						
74AUP2G00 v.10	20170703	Product data sheet	-	74AUP2G00 v.9		
	<u>Section 6.1</u>	nave been adapted to th and <u>Fig. 10</u> (drawings S r 74AUP2G00GD remo	OT1233/X2SON8) ι			
74AUP2G00 v.9	20161028	Product data sheet	-	74AUP2G00 v.8		
Modifications:	Added type	Added type number 74AUP2G00GX (SOT1233/X2SON8)				
74AUP2G00 v.8	20130205	Product data sheet	-	74AUP2G00 v.7		
Modifications:	For type number 74AUP2G00GD XSON8U has changed to XSON8.					
74AUP2G00 v.7	20120608	Product data sheet	-	74AUP2G00 v.6		
74AUP2G00 v.6	20111201	Product data sheet	-	74AUP2G00 v.5		
74AUP2G00 v.5	20101021	Product data sheet	-	74AUP2G00 v.4		
74AUP2G00 v.4	20080605	Product data sheet	-	74AUP2G00 v.3		
74AUP2G00 v.3	20080403	Product data sheet	-	74AUP2G00 v.2		
74AUP2G00 v.2	20070515	Product data sheet	-	74AUP2G00 v.1		
74AUP2G00 v.1	20060825	Product data sheet	-	-		

74AUP2G00

74AUP2G00

Low-power dual 2-input NAND gate

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74AUP2G00

Low-power dual 2-input NAND gate

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Marking	2
5. Functional diagram	2
6. Pinning information	3
6.1. Pinning	3
6.2. Pin description	3
7. Functional description	4
8. Limiting values	4
9. Recommended operating conditions	5
10. Static characteristics	5
11. Dynamic characteristics	8
11.1. Waveform and test circuit	9
12. Package outline	11
13. Abbreviations	16
14. Revision history	16
15. Legal information	17

© Nexperia B.V. 2024. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 12 August 2024

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

DCI	DCL	DCL	NA NOS1 NA A A A A A A A A A A A A A A A A
QUALITY MANAGEMENT SYSTEM CERTIFICATE	ENVIRONMENTAL MANAGEMENT SYSTEM CERTIFICATE	OCCUPATIONAL HEALTH & SAFETY MANAGEMENT SYSTEM CERTIFICATE	心可生存证明者 CERTIFICATE OF INCORPORATION
DIGI ELECTRONICS HK LIMITED	DIGI ELECTRONICS HK LIMITED	DIGI ELECTRONICS HK LIMITED	A B B - + Encercipe annihy that
RATINGS 355, 10 KING COMPETING AND A REAL AND STREET, MONGHD	FLATERALIS 397, HO HONG COMPRESSION AMOUNT A MUCH STREET, MONGRO	FLATERALIS 267, NO HANG CONDITION OF THE 2 HERA VIEW STREET, INCHORE	DELLE ACTIONCY INC. AMTES 均衡電子指導作符合可
GB/T 19001-2016 ktt ISO9001:2015	GB/T 24001-2016 idt ISO14001:2015	RUMANDO 2011 IO NOU COMMENSI DI NA VILLA STREET, MONIO R. S.	$0 \rightarrow 0$ if if $0 \rightarrow 0$ is $0 \rightarrow 0$ if $1 \ge 0 \le 0 \Rightarrow 0 \Rightarrow 0$ is DNs day becomestical in Kang Kang under the Comparison Delivarian $A \rightarrow 0 \Rightarrow A \rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$ (Effective E2) of the Laws of Hears Rough, and Hear Bits Compary is
Radies of electronic components	Select of dimension compared	Refer of elements compares	(1944)44 BE of the Laws of Hang Bong, and Ball Bas company is ${\mathbb T}$. ${\mathbb R}$, ${\mathbb T}$. The Ball company,
tantanaturate anter monoste tana meter meter mete	tartina Name Participation (New Strendspring A an AD	bethallheim antariana beat can Natural and an	5 # 4 # # ± 0 − Λ + − Λ ± + ± + ± ± + NetWO 06 32 James 200.
	Levelen And Face Level		€2445014.01.0-61164,8,468,80 Mo.Au.1.1.02050 Parglandar at Campanian Mang Space Associationstrate August
Control of the second sec	For the second s	Control traces for the first section of the fi	In Hop: 이 진 실 4년 3 근 카이트 토가에 · 프 + A. 비행 / 1 위 S · 진 3 · A. M. N · N · D · O. 위 · H. A. A. N R · A. H. A. H. H. H. S. Company, New All Per Companies Registry, then initiative any table intellights in any other tablecluid property rights interquent all the company, serve are any partitioned.

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.