

74LVC2G241GD,125 Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	74LVC2G241GD,125-DG
Manufacturer	Nexperia USA Inc.
Manufacturer Product Number	74LVC2G241GD,125
Description	IC BUFFER NON-INVERT
Detailed Description	Buffer, Non-Inverting 2 E -State Output 8-XSON (2

A Inc.

DN-INVERT 5.5V 8XSON

nverting 2 Element 1 Bit per Element 3 t 8-XSON (2x3)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74LVC2G241GD,125	Nexperia USA Inc.
Series:	Product Status:
74LVC	Obsolete
Logic Type:	Number of Elements:
Buffer, Non-Inverting	2
Number of Bits per Element:	Input Type:
1	
Output Type:	Current - Output High, Low:
3-State	32mA, 32mA
Voltage - Supply:	Operating Temperature:
1.65V ~ 5.5V	-40°C ~ 125°C (TA)
Mounting Type:	Package / Case:
Surface Mount	8-XFDFN
Supplier Device Package:	Base Product Number:
8-XSON (2x3)	74LVC2G241

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

1. General description

The 74LVC2G241 is a dual non-inverting buffer/line driver with 3-state outputs. The 3-state outputs are controlled by the output enable inputs $1\overline{OE}$ and 2OE:

- A HIGH level at pin 10E causes output 1Y to assume a high-impedance OFF-state.
- A LOW level at pin 2OE causes output 2Y to assume a high-impedance OFF-state.

Schmitt trigger action at all inputs makes the circuit highly tolerant of slower input rise and fall times.

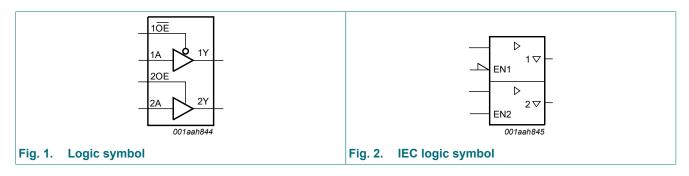
Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of the 74LVC2G241 as a translator in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

2. Features and benefits

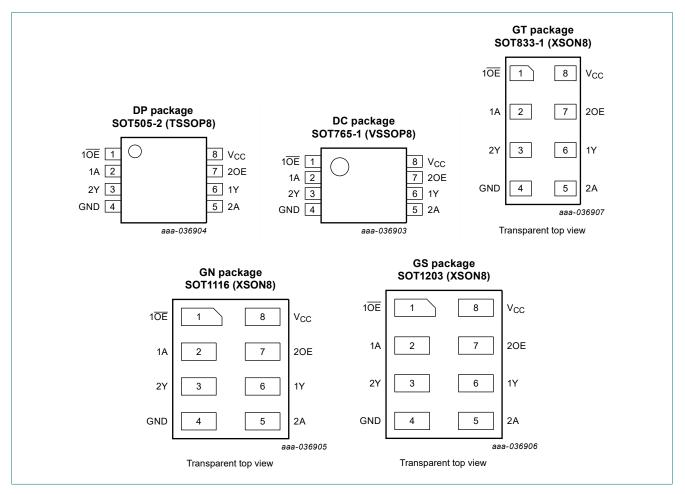
- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant input/output for interfacing with 5 V logic
- High noise immunity
- ±24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- Complies with JEDEC standard:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8-B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information


Type number	Package							
	Temperature range	Name	Description	Version				
74LVC2G241DP	-40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	<u>SOT505-2</u>				
74LVC2G241DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	<u>SOT765-1</u>				
74LVC2G241GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 × 1.95 × 0.5 mm	<u>SOT833-1</u>				
74LVC2G241GN	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 × 1.0 × 0.35 mm	<u>SOT1116</u>				
74LVC2G241GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 × 1.0 × 0.35 mm	<u>SOT1203</u>				

4. Marking

Table 2. Marking codes	
Type number	Marking code[1]
74LVC2G241DP	V241
74LVC2G241DC	V41
74LVC2G241GT	V41
74LVC2G241GN	V1
74LVC2G241GS	V1


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.2. Pin description

Table 3. Pin description		
Symbol	Pin	Description
1 0E	1	output enable input (active LOW)
1A, 2A	2, 5	data input
GND	4	ground (0 V)
1Y, 2Y	6, 3	data output
20E	7	output enable input (active HIGH)
V _{CC}	8	supply voltage

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

				Output		
1 <mark>0E</mark>	1A	2A	1Y	2Y		
L	L	Н	L	L	L	
L	Н	Н	Н	Н	Н	
Н	Х	L	Х	Z	Z	

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+6.5	V
Ι _{ΟΚ}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V		-	±50	mA
Vo	output voltage	enable mode	[1]	-0.5	V _{CC} + 0.5	V
		disable mode	[1]	-0.5	+6.5	V
		V _{CC} = 0 V; Power-down mode	[1]	-0.5	+6.5	V
lo	output current	$V_{O} = 0 V \text{ to } V_{CC}$		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C	[2]	-	250	mW

The input and output voltage ratings may be exceeded if the input and output current ratings are observed. [1] [2]

For SOT505-2 (TSSOP8) package: Ptot derates linearly with 4.6 mW/K above 96 °C.

For SOT765-1 (VSSOP8) package: Ptot derates linearly with 4.9 mW/K above 99 °C.

For SOT833-1 (XSON8) package: Ptot derates linearly with 3.1 mW/K above 68 °C.

For SOT1116 (XSON8) package: Ptot derates linearly with 4.2 mW/K above 90 °C.

For SOT1203 (XSON8) package: Ptot derates linearly with 3.6 mW/K above 81 °C.

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	V_{CC} = 1.65 V to 5.5 V; enable mode	0	V _{CC}	V
		V _{CC} = 1.65 V to 5.5 V; disable mode	0	5.5	V
		V _{CC} = 0 V; Power-down mode	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 1.65 V to 2.7 V	-	20	ns/V
		V _{CC} = 2.7 V to 5.5 V	-	10	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
T _{amb} = -4	40 °C to +85 °C		I		1	
V _{IH}	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	V
		V _{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V	-	-	0.3 × V _{CC}	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 µA; V_{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.3	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.4	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.55	V
		I _O = 32 mA; V _{CC} = 4.5 V	-	-	0.55	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = -100 µA; V_{CC} = 1.65 V to 5.5 V	V _{CC} - 0.1	-	-	V
		I _O = -4 mA; V _{CC} = 1.65 V	1.2	-	-	V
		I _O = -8 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I _O = -12 mA; V _{CC} = 2.7 V	2.2	-	-	V
		I _O = -24 mA; V _{CC} = 3.0 V	2.3	-	-	V
		I _O = -32 mA; V _{CC} = 4.5 V	3.8	-	-	V
l _l	input leakage current	V_{I} = 5.5 V or GND; V_{CC} = 0 V to 5.5 V	-	±0.1	±1	μA
l _{oz}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 5.5 \text{ V or GND};$ $V_{CC} = 3.6 \text{ V}$	-	±0.1	±2	μA
I _{OFF}	power-off leakage current	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	±0.1	±2	μA
I _{CC}	supply current	V _I = 5.5 V or GND; I _O = 0 A; V _{CC} = 1.65 V to 5.5 V	-	0.1	4	μA
ΔI _{CC}	additional supply current	per pin; V _I = V _{CC} - 0.6 V; I _O = 0 A; V _{CC} = 2.3 V to 5.5 V	-	5	500	μA
CI	input capacitance		-	2	-	pF

74LVC2G241

Dual buffer/line driver; 3-state

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
$\begin{tabular}{ c c c c c }\hline $\mathbf{T}_{amb} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C \\ \hline V_{IH} & HIGH-level input voltage $$V_{CC} = 1.65 \ V \ to 1.95 \ V $$0.65 \ \times V_{CC}$$ - $$ - $$ V $$V_{CC}$ = 2.3 \ V \ 0.27 \ V $$1.7 $$ - $$ V $$V_{CC}$ = 2.7 \ V \ 0.36 \ V $$2.0 $$ - $$ - $$ V $$V_{CC}$ = 4.5 \ V \ 0.55 \ V $$0.7 \ \times V_{CC}$$ - $$ - $$ V $$V_{CC}$ = 4.5 \ V \ 0.55 \ V $$0.7 \ \times V_{CC}$$ - $$ - $$ V $$V_{CC}$ = 0.35 \ \times V_{CC}$$V_{C}$$V_{C}$ = 0.35 \ \times V_{CC}$$V_{C}$$V_{CC}$ = 2.3 \ V \ 0.27 \ V $$V_{CC}$ = 2.3 \ V \ 0.7 \ \times V_{CC}$$ = - $$ 0.35 \ \times V_{CC}$$V_{V}$$V_{VCC}$ = 2.3 \ V \ 0.27 \ V $$ - $$ 0.35 \ \times V_{CC}$$V_{V}$$V_{VCC}$ = 2.3 \ V \ 0.27 \ V $$ - $$ 0.35 \ \times V_{CC}$$V_{V}$$V_{VCC}$ = 2.3 \ V \ 0.27 \ V $$ - $$ 0.38 \ V $$V_{VCC}$$V_{VCC}$ = 2.3 \ V \ 0.27 \ V $$ - $$ 0.38 \ V $$V_{VCC}$$V_{VCC}$ = 4.5 \ V \ 0.55 \ V $$ - $$ 0.3 \ \times V_{CC}$$V_{V}$$V_{VCC}$ = 4.5 \ V \ 0.55 \ V $$ - $$ 0.3 \ \times V_{CC}$$V_{VCC}$$V_{VCC}$ = 4.5 \ V \ 0.55 \ V $$ - $$ 0.3 \ \times V_{CC}$$V_{VCC}$$V_{VCC}$ = 1.65 \ V \ 0.55 \ V $$ - $$ 0.3 \ \times V_{CC}$$V_{VCC}$$V_{VCC}$$V_{VCC}$ = 1.65 \ V \ 0.55 \ V $$ - $$ 0.1 \ V $$V_{VCC}$$V_{VCC}$$V_{VCC}$ = 1.65 \ V \ 0.55 \ V $$ - $$ 0.1 \ V $$V_{VCC}$$V_{VCC}$$V_{VCC}$ = 1.65 \ V \ 0.55 \ V $$ - $$ 0.70 \ V $$V_{VC}$$V_{VCC}$$V_{VCC}$ = 1.65 \ V \ 0.55 \ V $$ - $$ 0.45 \ V $$V_{VCC}$$V_{VCC}$$V_{VCC}$ = 2.3 \ V $$ - $$ 0.45 \ V $$V_{VCC}$$V_{VCC}$$V_{VCC}$ = 2.3 \ V $$ V_{VCC}$ = 2.7 \ V $$ V_{VCC}$$V_{VCC}$$V_{VCC}$ = 0.45 \ V $$V_{VCC}$$V_{VCC$						
V _{IH}	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	V
		V _{CC} = 4.5 V to 5.5 V	0.7 × V _{CC}	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V _{CC} = 4.5 V to 5.5 V	-	-	0.3 × V _{CC}	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 µA; V_{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.70	V
		I _O = 8 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 12 mA; V _{CC} = 2.7 V	-	-	0.60	V
		I _O = 24 mA; V _{CC} = 3.0 V	-	-	0.80	V
		I _O = 32 mA; V _{CC} = 4.5 V	-	-	0.80	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = -100 µA; V_{CC} = 1.65 V to 5.5 V	V _{CC} - 0.1	-	-	V
		I _O = -4 mA; V _{CC} = 1.65 V	0.95	-	-	V
		I _O = -8 mA; V _{CC} = 2.3 V	1.7	-	-	V
		I _O = -12 mA; V _{CC} = 2.7 V	1.9	-	-	V
		I _O = -24 mA; V _{CC} = 3.0 V	2.0	-	-	V
		I _O = -32 mA; V _{CC} = 4.5 V	3.4	-	-	V
lı	input leakage current	V_{I} = 5.5 V or GND; V_{CC} = 0 V to 5.5 V	-	-	±1	μA
I _{OZ}	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = 5.5 \text{ V or GND};$ $V_{CC} = 3.6 \text{ V}$	-	-	±2	μA
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	±2	μA
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND}; I_{O} = 0 \text{ A};$ $V_{CC} = 1.65 V \text{ to } 5.5 V$	-	-	4	μA
Δl _{CC}	additional supply current	per pin; $V_1 = V_{CC} - 0.6 V$; $I_0 = 0 A$; $V_{CC} = 2.3 V$ to 5.5 V	-	-	500	μA

[1] Typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

Dual buffer/line driver; 3-state

11. Dynamic characteristics

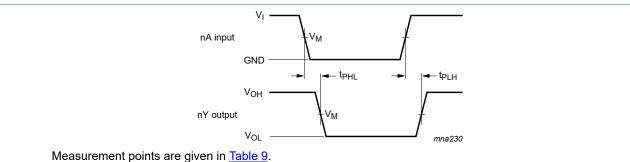
Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 6.

Symbol	Parameter	Conditions	-40 °C to +85 °C			-40 °C to	Unit	
			Min	Typ[1]	Мах	Min	Max	1
t _{pd}	propagation delay	nA to nY; see <u>Fig. 3</u> [2]						
		V _{CC} = 1.65 V to 1.95 V	1.0	4.5	8.8	1.0	11.0	ns
		V _{CC} = 2.3 V to 2.7 V	0.5	2.8	4.9	0.5	6.3	ns
		V _{CC} = 2.7 V	1.0	2.8	4.7	1.0	5.9	ns
		V _{CC} = 3.0 V to 3.6 V	0.5	2.6	4.3	0.5	5.4	ns
		V _{CC} = 4.5 V to 5.5 V	0.5	2.1	3.7	0.5	4.6	ns
t _{en}	enable time	10E to 1Y; see Fig. 4 [2]						
		V _{CC} = 1.65 V to 1.95 V	1.5	5.2	9.9	1.5	12.4	ns
		V _{CC} = 2.3 V to 2.7 V	1.0	3.1	5.6	1.0	7.0	ns
		V _{CC} = 2.7 V	1.5	3.2	5.5	1.5	6.9	ns
		V _{CC} = 3.0 V to 3.6 V	0.5	2.7	4.7	0.5	5.9	ns
		V _{CC} = 4.5 V to 5.5 V	0.5	2.0	3.8	0.5	4.8	ns
		2OE to 2Y; see Fig. 5 [2]						
		V _{CC} = 1.65 V to 1.95 V	1.0	4.3	8.8	1.0	11.0	ns
		V _{CC} = 2.3 V to 2.7 V	1.0	2.7	4.7	1.0	5.9	ns
		V _{CC} = 2.7 V	1.0	2.7	4.6	1.0	5.8	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	2.5	4.1	1.0	5.1	ns
		V _{CC} = 4.5 V to 5.5 V	0.5	1.9	3.3	0.5	4.1	ns
t _{dis}	disable time	10E to 1Y; see Fig. 4 [2]						
		V _{CC} = 1.65 V to 1.95 V	1.0	3.2	11.6	1.0	14.1	ns
		V _{CC} = 2.3 V to 2.7 V	0.5	2.2	5.8	0.5	7.6	ns
		V _{CC} = 2.7 V	1.0	2.8	4.6	1.0	5.9	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	2.6	4.4	1.0	5.7	ns
		V _{CC} = 4.5 V to 5.5 V	0.5	2.0	3.4	0.5	4.6	ns
		2OE to 2Y; see Fig. 5 [2]						
		V _{CC} = 1.65 V to 1.95 V	1.0	3.6	12.5	1.0	15.2	ns
		V _{CC} = 2.3 V to 2.7 V	0.5	2.0	5.2	0.5	6.9	ns
		V _{CC} = 2.7 V	1.5	3.2	4.9	1.5	6.3	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	2.8	4.2	1.0	5.4	ns
		V _{CC} = 4.5 V to 5.5 V	0.5	2.0	3.3	0.5	4.4	ns
C _{PD}	power dissipation	per buffer; $V_I = GND$ to V_{CC} [3]						
	capacitance	output enabled	-	20	-	-	-	pF
		output disabled	_	5	-	-	-	pF

Typical values are measured at nominal V_CC and at T_amb = 25 °C. [1]

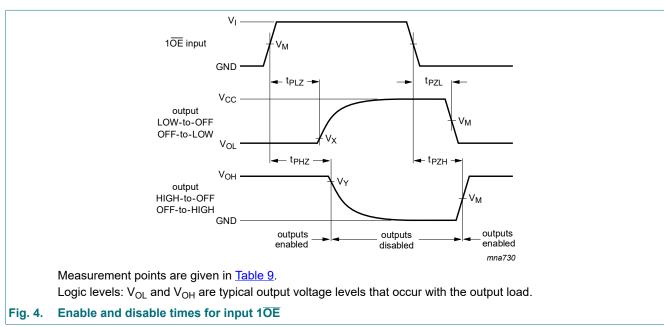
 $t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}; t_{en} \text{ is the same as } t_{PZH} \text{ and } t_{PZL}; t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}. \\ C_{PD} \text{ is used to determine the dynamic power dissipation } (P_D \text{ in } \mu W). \\ P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:} \\ f_i = \text{ input frequency in MHz}; f_o = \text{ output frequency in MHz}; C_L = \text{ output load capacitance in } pF;$ [2]


[3]

 V_{CC} = supply voltage in V; N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

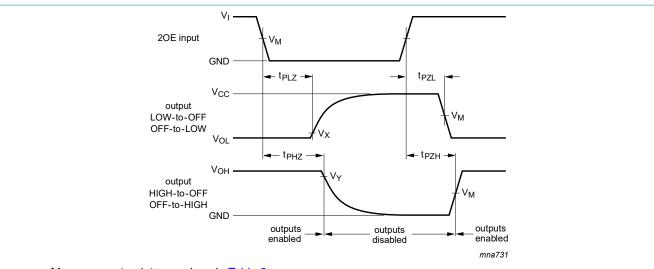
74LVC2G241

Dual buffer/line driver; 3-state



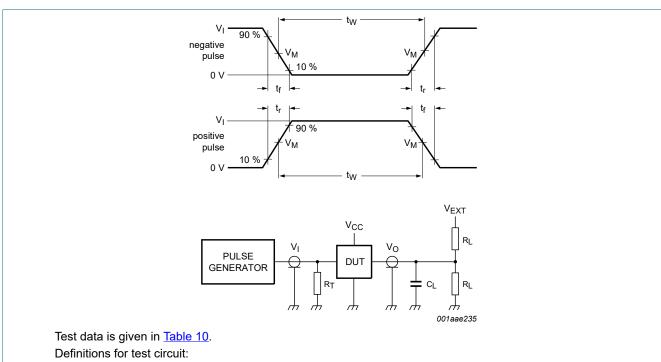
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 3. The data input (nA) to output (nY) propagation delays


Table 9. Measurement points

Supply voltage	Input	Output			
V _{cc}	V _M	V _M	V _X	V _Y	
1.65 V to 1.95 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V	
2.3 V to 2.7 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V	
2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} - 0.3 V	
3.0 V to 3.6 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} - 0.3 V	
4.5 V to 5.5 V	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} - 0.3 V	

74LVC2G241

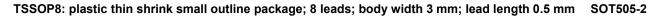

Dual buffer/line driver; 3-state

Measurement points are given in <u>Table 9</u>.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 5. Enable and disable times for input 2OE

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator;


 C_L = Load capacitance including jig and probe capacitance; R_L = Load resistance.

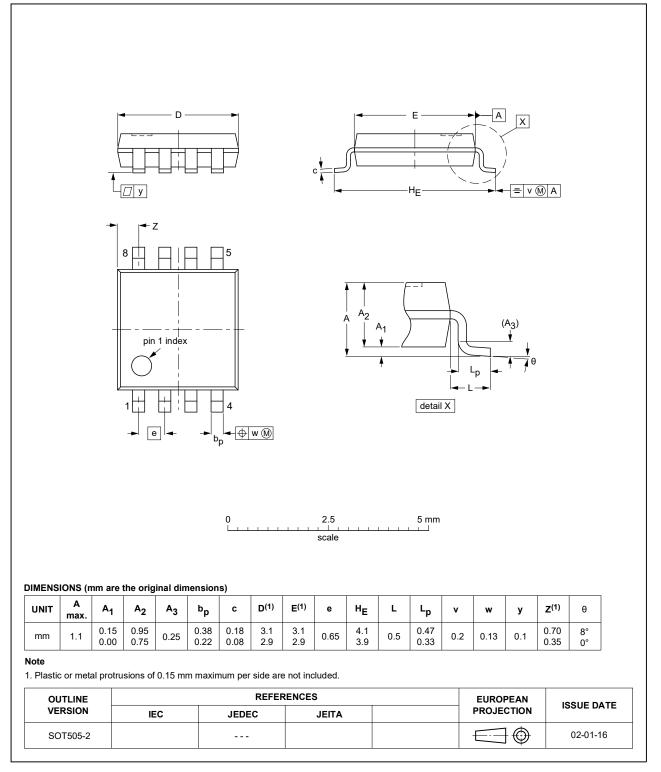

Fig. 6. Test circuit for measuring switching times

Table 10. Test data						
Supply voltage	Input	Load		V _{EXT}		
	Vi	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
1.65 V to 1.95 V	V _{CC}	30 pF	1 kΩ	open	GND	2V _{CC}
2.3 V to 2.7 V	V _{CC}	30 pF	500 Ω	open	GND	2V _{CC}
2.7 V	2.7 V	50 pF	500 Ω	open	GND	6 V
3.0 V to 3.6 V	2.7 V	50 pF	500 Ω	open	GND	6 V
4.5 V to 5.5 V	V _{CC}	50 pF	500 Ω	open	GND	2V _{CC}

Dual buffer/line driver; 3-state

12. Package outline

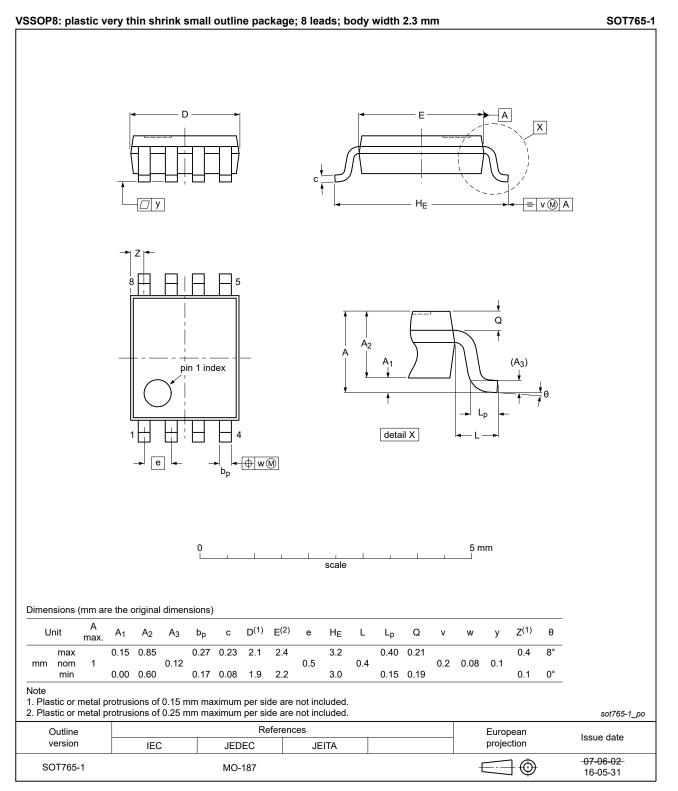


Fig. 7. Package outline SOT505-2 (TSSOP8)

74LVC2G241

74LVC2G241

Dual buffer/line driver; 3-state

Dual buffer/line driver; 3-state

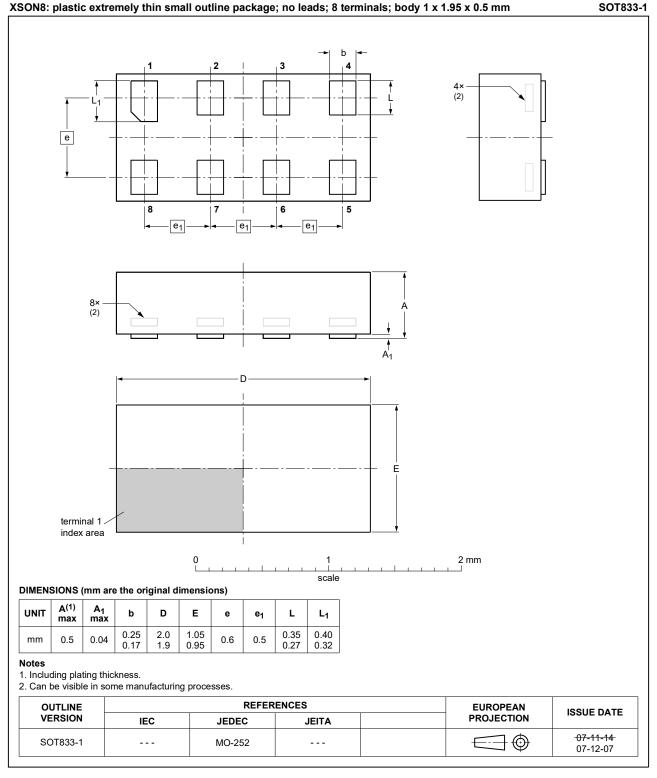
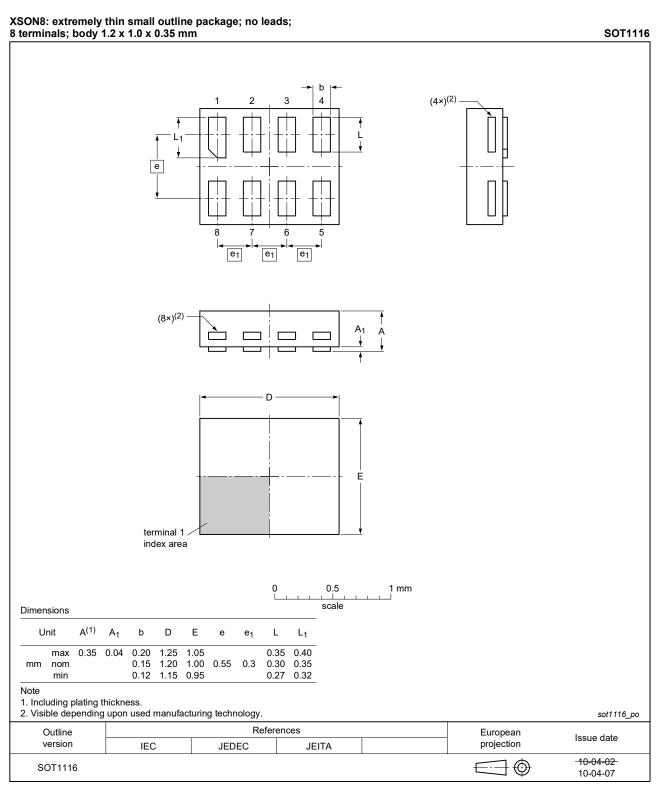



Fig. 9. Package outline SOT833-1 (XSON8)

74LVC2G241

Dual buffer/line driver; 3-state

74LVC2G241

Dual buffer/line driver; 3-state

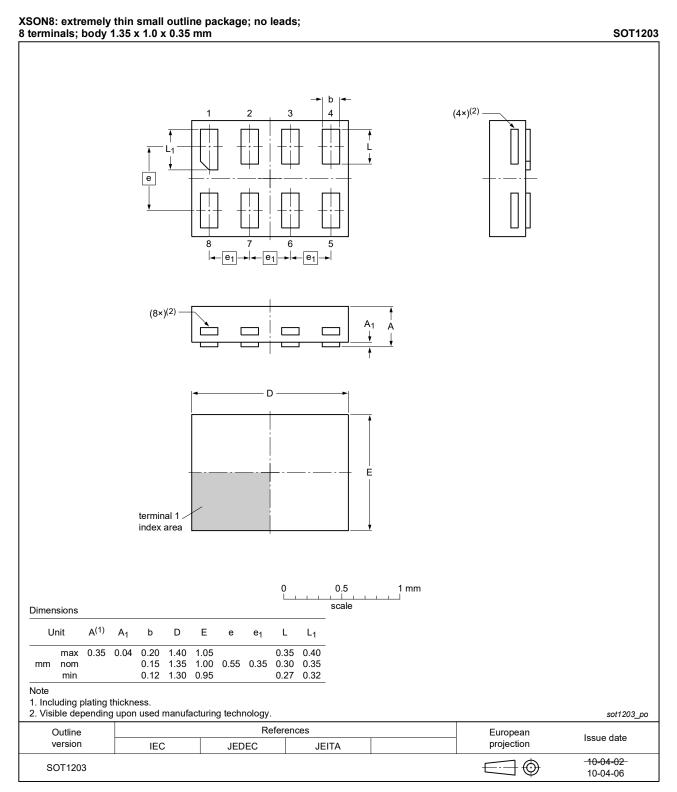


Fig. 11. Package outline SOT1203 (XSON8)

13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
TTL	Transistor-Transistor Logic

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LVC2G241 v.18	20240430	Product data sheet	-	74LVC2G241 v.17		
Modifications:	Type numb	Type number 74LVC2G241GF (SOT1089/XSON8) removed.				
74LVC2G241 v.17	20230821	Product data sheet	-	74LVC2G241 v.16		
Modifications:	<u>Section 2</u> : I	• <u>Section 2</u> : ESD specification updated in according to the latest Jedec standard.				
74LVC2G241 v.16	20190731	Product data sheet	-	74LVC2G241 v.15		
Modifications:	••					
74LVC2G241 v.15	20181122	Product data sheet	-	74LVC2G241 v.14		
Modifications:	guidelines o Legal texts	of this data sheet has bee of Nexperia. have been adapted to the ers 74LVC2G241GD (SO	new company nar	ne where appropriate.		
74LVC2G241 v.14	20161215	Product data sheet	-	74LVC2G241 v.13		
Modifications:	• <u>Table 7</u> : Th	• <u>Table 7</u> : The maximum limits for leakage current and supply current have changed.				
74LVC2G241 v.13	20130408	Product data sheet	-	74LVC2G241 v.12		
Modifications:	For type nu	For type number 74LVC2G241GD XSON8U has changed to XSON8.				
74LVC2G241 v.12	20120622	Product data sheet	-	74LVC2G241 v.11		
Modifications:	For type nu	• For type number 74LVC2G241GM the SOT code has changed to SOT902-2.				
74LVC2G241 v.11	20111129	Product data sheet	-	74LVC2G241 v.10		
Modifications:	Legal page	Legal pages updated.				
74LVC2G241 v.10	20100806	Product data sheet	-	74LVC2G241 v.9		
74LVC2G241 v.9	20080610	Product data sheet	-	74LVC2G241 v.8		
74LVC2G241 v.8	20080312	Product data sheet	-	74LVC2G241 v.7		
74LVC2G241 v.7	20071005	Product data sheet	-	74LVC2G241 v.6		
74LVC2G241 v.6	20060922	Product data sheet	-	74LVC2G241 v.5		
74LVC2G241 v.5	20050202	Product specification	-	74LVC2G241 v.4		
74LVC2G241 v.4	20040922	Product specification	-	74LVC2G241 v.3		
74LVC2G241 v.3	20030311	Product specification	-	74LVC2G241 v.2		
74LVC2G241 v.2	20030129	Product specification	-	74LVC2G241 v.1		

74LVC2G241

Dual buffer/line driver; 3-state

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74LVC2G241

Dual buffer/line driver; 3-state

Contents

1
1
2
2
2
3
3
3
4
4
4
5
7
8
10
15
15
16

© Nexperia B.V. 2024. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 30 April 2024

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

DCI	DCL	DCL	NA NOS1 NA A
QUALITY MANAGEMENT SYSTEM CERTIFICATE	ENVIRONMENTAL MANAGEMENT SYSTEM CERTIFICATE	OCCUPATIONAL HEALTH & SAFETY MANAGEMENT SYSTEM CERTIFICATE	心可生存证明者 CERTIFICATE OF INCORPORATION
DIGI ELECTRONICS HK LIMITED	DIGI ELECTRONICS HK LIMITED	DIGI ELECTRONICS HK LIMITED	A B B - + I have by small y that
RATINGS 355, 10 KING COMPETING AND A REAL AND STREET, MONGHD	FLATERALIS 397, HO HONG COMPRESSION AMOUNT A MUCH STREET, MONGRO	FLATERALIS 267, NO HANG CONVERTING AND THE 2 HERA VIEW STREET, INCHORE	DELLE ACTIONCY INC. AMTES 均衡電子指導作符合可
GB/T 19001-2016 ktt ISO9001:2015	GB/T 24001-2016 idt ISO14001:2015	RUMANDO 2011 IO NOD COMPARING CONTRA 5 16 Y VAN STREET, MONINO R. S.	$0 \rightarrow 0$ if if $0 \rightarrow 0$ is $0 \rightarrow 0$ if $1 \ge 0 \le 0 \Rightarrow 0 \Rightarrow 0$ is DNs day becomestical in Kang Kang under the Comparison Delivarian $A \rightarrow 0 \Rightarrow A \rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$ (Effective E2) of the Laws of Hears Rough, and Hear Bits Compary is
Radies of electronic components	Select of dimension compared	Refer of elements compares	(1944)44 BE of the Laws of Hang Bong, and Ball Bas company is ${\mathbb T}$. ${\mathbb R}$, ${\mathbb T}$. The Ball company,
tantanaturate anter monoste tana meter meter mete	tartina Name Participation (New Strendspring A an AD	bethallheim antariana beat can NUSH-604-13 Marchille	5 # 4 # # ± 0 − Λ + − Λ ± + ± + ± ± + NetWO 06 32 James 200.
	Levelen And Face Level		€2445014.01.0-61164,8,468,80 Mo.Au.1.1.02050 Parglandar at Campanian Mang Space Associationstrate August
Control of the second sec	For the second s	Control trace is a first of the second	In Hop: 이 진 실 4년 3 근 카이트 토가에 · 프 + A. 비행 / 1 위 · 의 · 의 · A. 비행 / 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.