

## **PCA9535PWJ Datasheet**

# nexperia

| DiGi Electronics Part Number | PC  |
|------------------------------|-----|
| Manufacturer                 | Ne  |
| Manufacturer Product Number  | РС  |
| Description                  | 120 |
| Detailed Description         | 1/0 |

CA9535PWJ-DG <mark>experia USA Inc.</mark> CA9535PWJ CC

I/O Expander 16 I2C, SMBus 400 kHz 24-TSSOP

https://www.DiGi-Electronics.com



Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.



## Purchase and inquiry

| Manufacturer Product Number:    | Manufacturer:                 |
|---------------------------------|-------------------------------|
| PCA9535PWJ                      | Nexperia USA Inc.             |
| Series:                         | Product Status:               |
|                                 | Active                        |
| Number of I/O:                  | Interface:                    |
| 16                              | I2C, SMBus                    |
| Interrupt Output:               | Features:                     |
| Yes                             | POR                           |
| Output Type:                    | Current - Output Source/Sink: |
| Push-Pull                       | 10mA, 25mA                    |
| Clock Frequency:                | Voltage - Supply:             |
| 400 kHz                         | 2.3V ~ 5.5V                   |
| Operating Temperature:          | Mounting Type:                |
| -40°C ~ 85°C                    | Surface Mount                 |
| Package / Case:                 | Supplier Device Package:      |
| 24-TSSOP (0.173", 4.40mm Width) | 24-TSSOP                      |

## Environmental & Export classification

| RoHS Status:     | Moisture Sensitivity Level (MSL): |
|------------------|-----------------------------------|
| ROHS3 Compliant  | 1 (Unlimited)                     |
| REACH Status:    | ECCN:                             |
| REACH Unaffected | EAR99                             |
| HTSUS:           |                                   |
| 8542.39.0001     |                                   |

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers Rev. 1.1 — 1 August 2024 Product data sheet

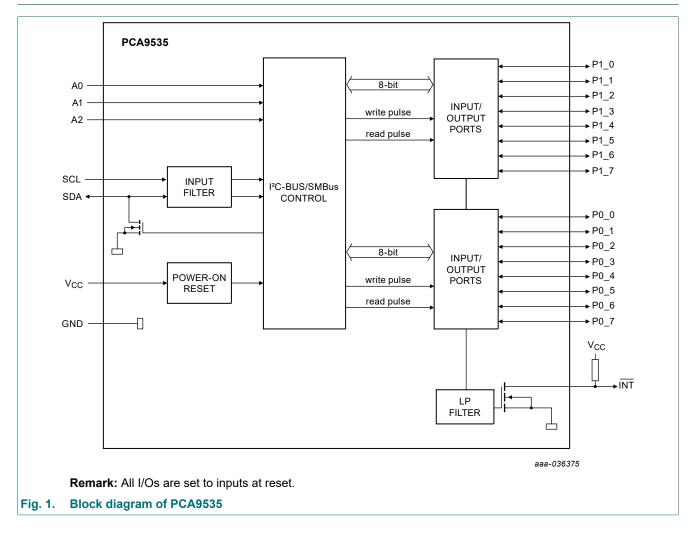
## 1. General description

The PCA9535 provides 16 bits of General Purpose Input/Output (GPIO) expansion for I<sup>2</sup>C-bus/SMBus applications. It is designed for a wide voltage range of 2.3 V to 5.5 V with interrupt. Nexperia GPIO expanders provide an elegant solution when additional IOs are needed while keeping the interconnections to a minimum, for example, in ACPI power switches, sensors, push buttons, LEDs and fan control. The PCA9535 contains a set of 8 bit Input, Output, Configuration and Polarity inversion registers. At power up all IOs default to inputs. Each IO can be configured as either input or output by changing the corresponding bit in the configuration register. The data for each input or output is stored in the corresponding input or output register. The polarity inversion register can be programmed to invert the polarity of the input register. The PCA9535 has an opendrain interrupt output which is activated when any one of the GPIO changes from its corresponding input port register state. The power on reset sets the registers to default values and initializes the device state machine. The PCA9535 has three address pins A0, A1 and A2 which can be used to configure the I<sup>2</sup>C bus slave address of the device. It allows up-to eight devices to share the same I<sup>2</sup>C-bus/SMBus.

## 2. Features and benefits

- I<sup>2</sup>C-bus to parallel port expander
- Operating power supply voltage range of 2.3 V to 5.5 V
- Ultra low standby current consumption:
  - 1 µA (maximum)
- Schmitt-trigger action allows slow input transition and better switching noise immunity at the SCL and SDA inputs
  - $V_{hys} = 0.10 \times V_{CC}$  (typical)
  - Noise filter on SCL and SDA inputs
- 5 V tolerant I/Os
- 16 I/O pins which power up configured in input state
- Open-drain active LOW interrupt output (INT)
- 400 kHz Fast-mode I<sup>2</sup>C-bus
- Internal power-on reset
- No glitch on power-up
- Latched outputs with 25 mA drive maximum capability for directly driving LEDs
- Latch-up performance exceeds 100 mA per JESD78, Class II
- ESD protection:
  - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
  - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- TSSOP24 package: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

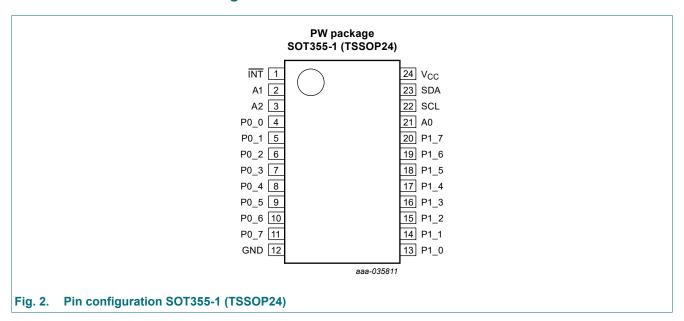
nexperia


Specified from -40 °C to +85 °C

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

## 3. Ordering information

| Table 1. Ordering information |                   |         |                                                                           |                 |  |  |  |  |  |
|-------------------------------|-------------------|---------|---------------------------------------------------------------------------|-----------------|--|--|--|--|--|
| Type number Package           |                   |         |                                                                           |                 |  |  |  |  |  |
|                               | Temperature range | Name    | Description                                                               | Version         |  |  |  |  |  |
| PCA9535PW                     | -40 °C to +85 °C  | TSSOP24 | plastic thin shrink small outline package; 24 leads;<br>body width 4.4 mm | <u>SOT355-1</u> |  |  |  |  |  |


## 4. Block diagram



Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

## 5. Pinning information

5.1. Pinning



#### 5.2. Pin description

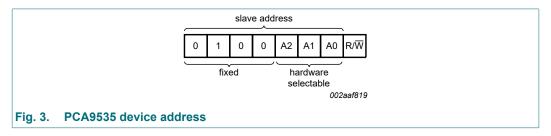
| Symbol                | Pin | Туре  | Description                                                                   |
|-----------------------|-----|-------|-------------------------------------------------------------------------------|
| INT                   | 1   | 0     | Interrupt output. Connect to V <sub>CC</sub> through a pull-up resistor       |
| A1                    | 2   | I     | Address input 1. Connect directly to V <sub>CC</sub> or GND                   |
| A2                    | 3   | I     | Address input 2. Connect directly to V <sub>CC</sub> or GND                   |
| P0_0 [1]              | 4   | I/O   | Parallel port I/O. Push-pull driver. At power on, P0_0 is configured as input |
| P0_1 [1]              | 5   | I/O   | Parallel port I/O. Push-pull driver. At power on, P0_1 is configured as input |
| P0_2 [1]              | 6   | I/O   | Parallel port I/O. Push-pull driver. At power on, P0_2 is configured as input |
| P0_3 [1]              | 7   | I/O   | Parallel port I/O. Push-pull driver. At power on, P0_3 is configured as input |
| P0_4 [1]              | 8   | I/O   | Parallel port I/O. Push-pull driver. At power on, P0_4 is configured as input |
| P0_5 <mark>[1]</mark> | 9   | I/O   | Parallel port I/O. Push-pull driver. At power on, P0_5 is configured as input |
| P0_6 <mark>[1]</mark> | 10  | I/O   | Parallel port I/O. Push-pull driver. At power on, P0_6 is configured as input |
| P0_7 <mark>[1]</mark> | 11  | I/O   | Parallel port I/O. Push-pull driver. At power on, P0_7 is configured as input |
| GND                   | 12  | power | Ground                                                                        |
| P1_0 <mark>[2]</mark> | 13  | I/O   | Parallel port I/O. Push-pull driver. At power on, P1_0 is configured as input |
| P1_1 <mark>[2]</mark> | 14  | I/O   | Parallel port I/O. Push-pull driver. At power on, P1_1 is configured as input |
| P1_2 <mark>[2]</mark> | 15  | I/O   | Parallel port I/O. Push-pull driver. At power on, P1_2 is configured as input |
| P1_3 <mark>[2]</mark> | 16  | I/O   | Parallel port I/O. Push-pull driver. At power on, P1_3 is configured as input |
| P1_4 [2]              | 17  | I/O   | Parallel port I/O. Push-pull driver. At power on, P1_4 is configured as input |
| P1_5 <mark>[2]</mark> | 18  | I/O   | Parallel port I/O. Push-pull driver. At power on, P1_5 is configured as input |
| P1_6 <mark>[2]</mark> | 19  | I/O   | Parallel port I/O. Push-pull driver. At power on, P1_6 is configured as input |
| P1_7 <mark>[2]</mark> | 20  | I/O   | Parallel port I/O. Push-pull driver. At power on, P1_7 is configured as input |
| A0                    | 21  | 1     | Address input 0. Connect directly to V <sub>CC</sub> or GND                   |

## PCA9535

registers

#### Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration

| Symbol          | Pin | Туре  | Description                                                      |
|-----------------|-----|-------|------------------------------------------------------------------|
| SCL             | 22  | I     | Serial clock bus. Connect to $V_{CC}$ through a pull-up resistor |
| SDA             | 23  | I/O   | Serial data bus. Connect to $V_{CC}$ through a pull-up resistor. |
| V <sub>CC</sub> | 24  | power | Supply voltage.                                                  |

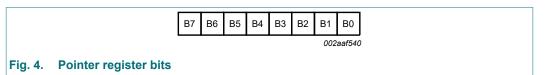

[1] Pins P0\_0 to P0\_7 correspond to bits P0.0 to P0.7. At power-up, all I/O are configured as high-impedance inputs.

[2] Pins P1\_0 to P1\_7 correspond to bits P1.0 to P1.7. At power-up, all I/O are configured as high-impedance inputs.

## 6. Functional description

For the block diagram of the PCA9535 see Fig. 1.

#### 6.1. Device address




A2, A1 and A0 are the hardware address package pins and are held to either HIGH (logic 1) or LOW (logic 0) to assign one of the eight possible slave addresses. The last bit of the slave address ( $R/\overline{W}$ ) defines the operation (read or write) to be performed. A HIGH (logic 1) selects a read operation, while a LOW (logic 0) selects a write operation.

#### 6.2. Registers

#### 6.2.1. Pointer register and command byte

Following the successful acknowledgement of the address byte, the bus master sends a command byte, which is stored in the address pointer register of the PCA9535. The lower three bits of this data byte state the operation (read or write) and the internal registers (Input, Output, Polarity Inversion, or Configuration) that will be affected. This register is write only.



PCA9535

## PCA9535

## Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

|    | 5.00 | Poin | ter re |    | bite |    |    | Command byte  | Register                  | Protocol        | Power-up      |
|----|------|------|--------|----|------|----|----|---------------|---------------------------|-----------------|---------------|
| B7 | B6   | B5   | B4     | B3 | B2   | B1 | B0 | (hexadecimal) | itegister                 | FICIOCOI        | default       |
| 0  | 0    | 0    | 0      | 0  | 0    | 0  | 0  | 00h           | Input port 0              | read byte       | XXXX XXXX [1] |
| 0  | 0    | 0    | 0      | 0  | 0    | 0  | 1  | 01h           | Input port 1              | read byte       | XXXX XXXX     |
| 0  | 0    | 0    | 0      | 0  | 0    | 1  | 0  | 02h           | Output port 0             | read/write byte | 1111 1111     |
| 0  | 0    | 0    | 0      | 0  | 0    | 1  | 1  | 03h           | Output port 1             | read/write byte | 1111 1111     |
| 0  | 0    | 0    | 0      | 0  | 1    | 0  | 0  | 04h           | Polarity Inversion port 0 | read/write byte | 0000 0000     |
| 0  | 0    | 0    | 0      | 0  | 1    | 0  | 1  | 05h           | Polarity Inversion port 1 | read/write byte | 0000 0000     |
| 0  | 0    | 0    | 0      | 0  | 1    | 1  | 0  | 06h           | Configuration port 0      | read/write byte | 1111 1111     |
| 0  | 0    | 0    | 0      | 0  | 1    | 1  | 1  | 07h           | Configuration port 1      | read/write byte | 1111 1111     |

[1] The default value 'X' is determined by the externally applied logic level.

#### 6.2.2. Input port register pair (00h, 01h)

The Input port registers (registers 0 and 1) define the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. The Input port registers are read only; writes to these registers have no effect. The default value 'X' is determined by the externally applied logic level. An Input port register read operation is performed as described in <u>Section 7.2</u>.

#### Table 4. Input port 0 register (address 00h)

| Bit     | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---------|------|------|------|------|------|------|------|------|
| Symbol  | 10.7 | 10.6 | 10.5 | 10.4 | 10.3 | 10.2 | 10.1 | 10.0 |
| Default | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |

#### Table 5. Input port 1 register (address 01h)

| Bit     | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---------|------|------|------|------|------|------|------|------|
| Symbol  | l1.7 | l1.6 | l1.5 | l1.4 | l1.3 | l1.2 | 11.1 | l1.0 |
| Default | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |

#### 6.2.3. Output port register pair (02h, 03h)

The Output port registers (registers 2 and 3) define the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in these registers have no effect on pins defined as inputs. In turn, reads from these registers reflect the value that was written to these registers, **not** the actual pin value. A register pair write is described in <u>Section 7.1</u> and a register pair read is described in <u>Section 7.2</u>.

#### Table 6. Output port 0 register (address 02h)

| Bit     | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---------|------|------|------|------|------|------|------|------|
| Symbol  | O0.7 | O0.6 | O0.5 | O0.4 | O0.3 | O0.2 | O0.1 | O0.0 |
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |

#### Table 7. Output port 1 register (address 03h)

| Bit     | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---------|------|------|------|------|------|------|------|------|
| Symbol  | 01.7 | 01.6 | O1.5 | 01.4 | 01.3 | 01.2 | 01.1 | O1.0 |
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |

PCA9535

#### 6.2.4. Polarity inversion register pair (04h, 05h)

The Polarity inversion registers (registers 4 and 5) allow polarity inversion of pins defined as inputs by the Configuration register. If a bit in these registers is set (written with '1'), the corresponding port pin's polarity is inverted in the Input register. If a bit in this register is cleared (written with a '0'), the corresponding port pin's polarity is retained. A register pair write is described in <u>Section 7.1</u> and a register pair read is described in <u>Section 7.2</u>.

#### Table 8. Polarity inversion port 0 register (address 04h)

| Bit     | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---------|------|------|------|------|------|------|------|------|
| Symbol  | N0.7 | N0.6 | N0.5 | N0.4 | N0.3 | N0.2 | N0.1 | N0.0 |
| Default | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### Table 9. Polarity inversion port 1 register (address 05h)

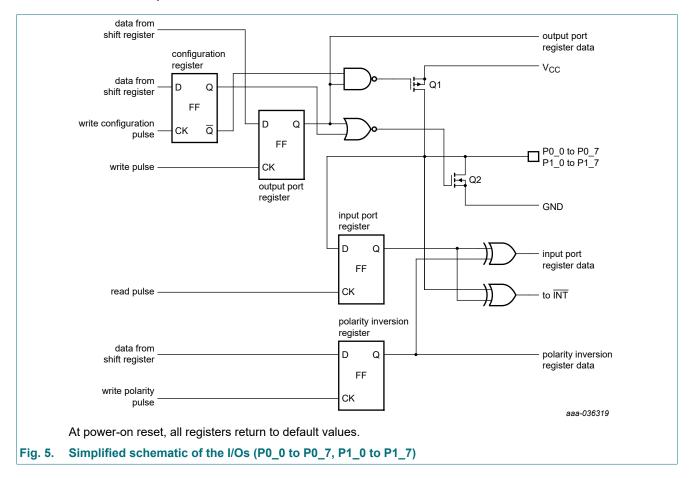
| Bit     | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---------|------|------|------|------|------|------|------|------|
| Symbol  | N1.7 | N1.6 | N1.5 | N1.4 | N1.3 | N1.2 | N1.1 | N1.0 |
| Default | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

#### 6.2.5. Configuration register pair (06h, 07h)

The Configuration registers (registers 6 and 7) configure the direction of the I/O pins. If a bit in these registers is set to 1, the corresponding port pin is enabled as a high-impedance input. If a bit in these registers is cleared to 0, the corresponding port pin is enabled as an output. A register pair write is described in <u>Section 7.1</u> and a register pair read is described in <u>Section 7.2</u>.

#### Table 10. Configuration port 0 register (address 06h)

| Bit     | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---------|------|------|------|------|------|------|------|------|
| Symbol  | C0.7 | C0.6 | C0.5 | C0.4 | C0.3 | C0.2 | C0.1 | C0.0 |
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |


#### Table 11. Configuration port 1 register (address 07h)

| Bit     | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|---------|------|------|------|------|------|------|------|------|
| Symbol  | C1.7 | C1.6 | C1.5 | C1.4 | C1.3 | C1.2 | C1.1 | C1.0 |
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |

#### 6.3. I/O port

When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The input voltage may be raised above  $V_{CC}$  to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output port register. In this case, there are low-impedance paths between the I/O pin and either  $V_{CC}$  or GND. The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.



#### 6.4. Power-on reset

When power (from 0 V) is applied to V<sub>CC</sub> and starts rising, an internal power-on reset holds the PCA9535 in a reset condition until V<sub>CC</sub> has reached V<sub>PORR</sub>. At that time, the reset condition is released and the PCA9535 registers and I<sup>2</sup>C-bus/SMBus state machine initializes to their default states. After that, V<sub>CC</sub> must be lowered to below 0.2 V and back up to the operating voltage for a power-reset cycle. See <u>Section 8.2</u>.

#### 6.5. Interrupt output

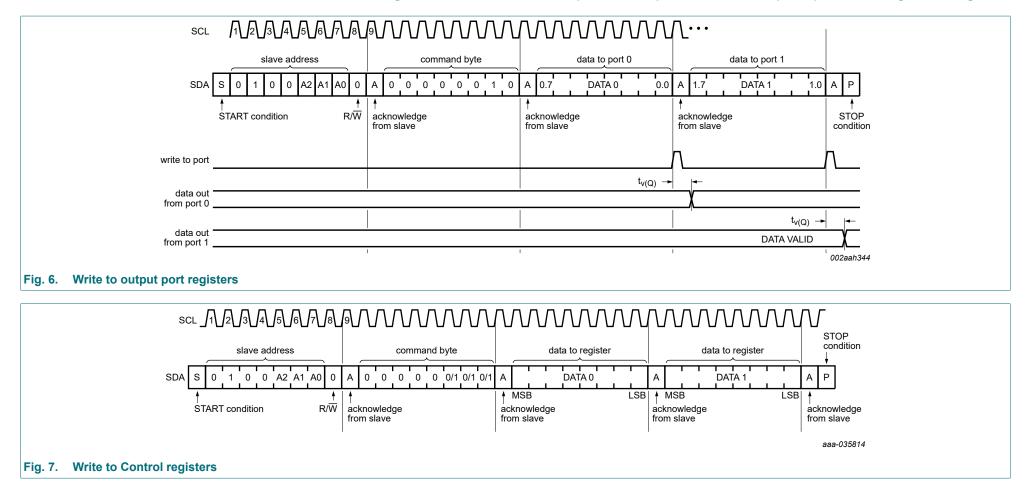
An interrupt is generated by any rising or falling edge of the port inputs in the Input mode. After time  $t_{v(INT)}$ , the signal  $\overline{INT}$  is valid. The interrupt is reset when data on the port changes back to the original value or when data is read form the port that generated the interrupt (see Fig. 9 and Fig. 10). Resetting occurs in the Read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Any change of the I/Os after resetting is detected and is transmitted as  $\overline{INT}$ .

A pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input Port register.

#### 7. Bus transactions

The PCA9535 is an I<sup>2</sup>C-bus slave device. Data is exchanged between the master and PCA9535 through write and read commands using I<sup>2</sup>C-bus. The two communication lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

#### 7.1. Writing to the port registers


Data is transmitted to the PCA9535 by sending the start condition, device address and setting the read-write bit to a logic 0 (see Fig. 3). The command byte is sent after the address and determines which register will receive the data following the command byte.

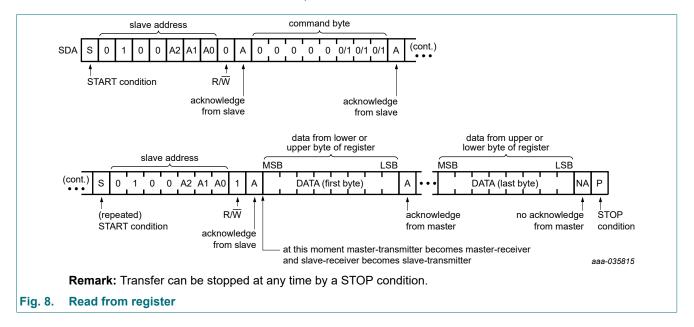
Eight registers within the PCA9535 are configured to operate as four register pairs. The four pairs are input port, output port, polarity inversion, configuration registers. After sending data to one register, the next data byte is sent to the other register in the pair (see Fig. 6 and Fig. 7). For example, if the first byte is sent to output port 1 (register 3), the next byte is stored in output port 0 (register 2).

There is no limitation on the number of data bytes sent in one write transmission. In this way, the host can continuously update a register pair independently of the other registers, or the host can simply update a single register.

#### PCA9535PWJ Nexperia USA Inc. I2C

#### Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers



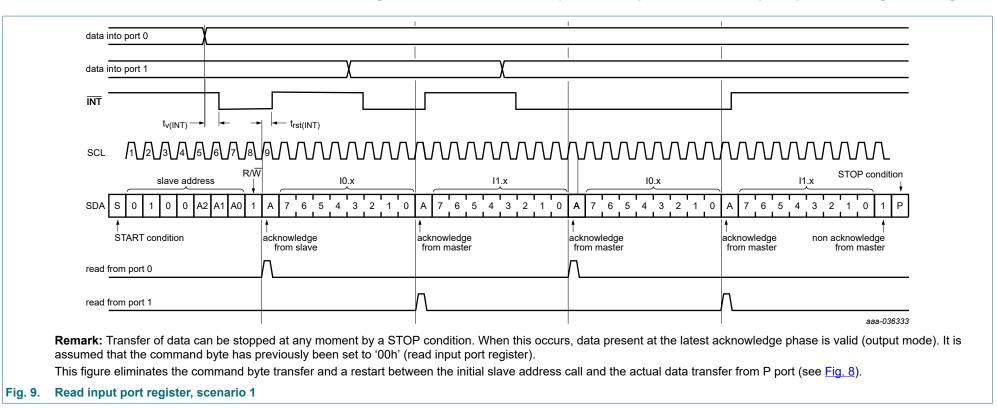

## PCA9535

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

#### 7.2. Reading the port registers

In order to read data from the PCA9535, the bus master must first send the PCA9535 start condition, device address with the read-write bit set to a logic 0 (see Fig. 3). The command byte is sent after the address and determines which register will be accessed. After a start or restart, the device address is sent again, but this time the least significant bit is set to a logic 1. Data from the register defined by the command byte is sent by the PCA9535 (see Fig. 8, Fig. 9 and Fig. 10). Data is clocked into the register on the rising edge of the acknowledge clock pulse. After the first byte is read, additional bytes may be read but the data now reflects the information in the other register in the pair. For example, if Input Port 1 is read, the next byte read is Input Port 0. There is no limit on the number of data bytes received in one read transmission, but on the final byte received the bus master must not acknowledge the data.

After a subsequent start or restart, the command byte contains the value of the next register to be read in the pair. For example, if Input Port 1 was read last before the restart, the register that is read after the restart is the Input Port 0.

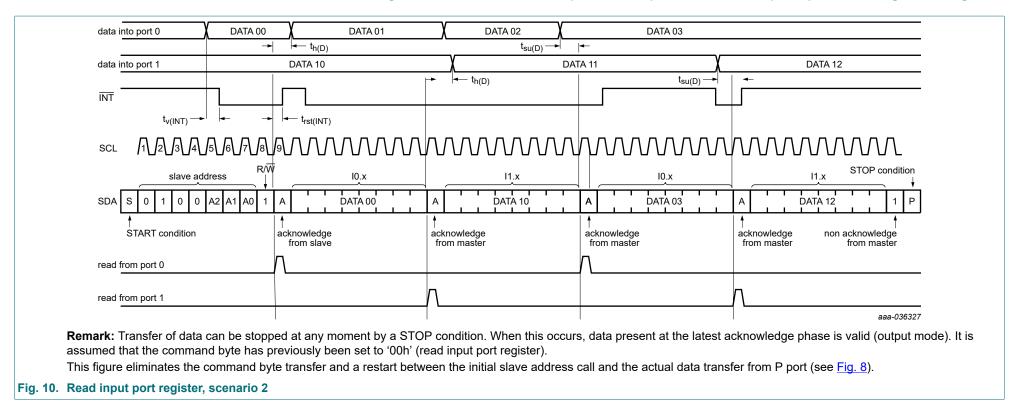



#### PCA9535PWJ Nexperia USA Inc. I2C

#### Nexperia

## PCA9535

#### Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

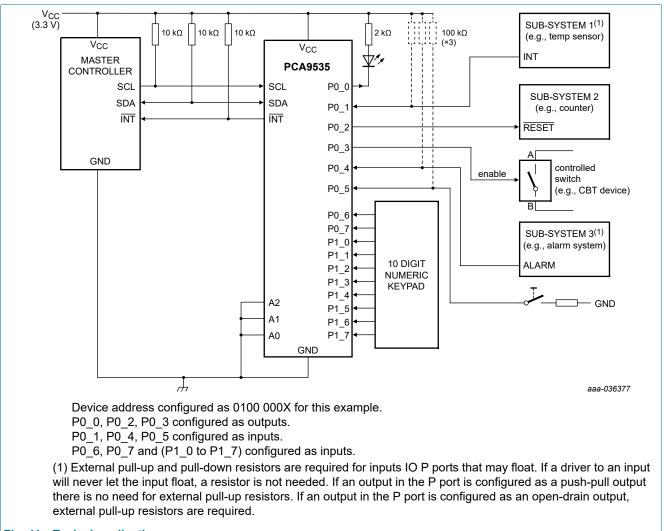



#### PCA9535PWJ Nexperia USA Inc. I2C

#### Nexperia

## PCA9535

#### Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers



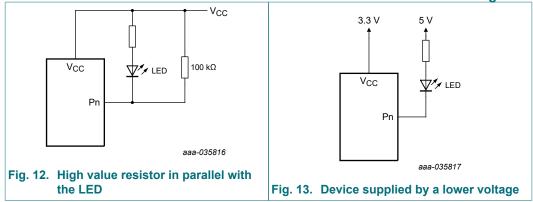

PCA9535

## PCA9535

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

## 8. Application design-in information




#### Fig. 11. Typical application

#### 8.1. Minimizing I<sub>CC</sub> when the I/Os are used to control LEDs

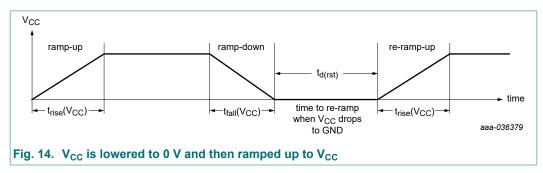
When the I/Os are used to control LEDs, they are normally connected to V<sub>CC</sub> through a resistor as shown in Fig. 11. Since the LED acts as a diode, when the LED is off the I/O V<sub>I</sub> is about 1.2 V less than V<sub>CC</sub>. The supply current, I<sub>CC</sub>, increases as V<sub>I</sub> becomes lower than V<sub>CC</sub>.

Designs needing to minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to V<sub>CC</sub> when the LED is off. Fig. 12 shows a high value resistor in parallel with the LED. Fig. 13 shows V<sub>CC</sub> less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V<sub>I</sub> at or above V<sub>CC</sub> and prevents additional supply current consumption when the LED is off.

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers



#### 8.2. Power-on reset requirements


The device can be properly reset if  $V_{CC}$  complies with  $t_{d(rst)} > 300$  ms as shown in Fig. 14. If the ramp conditions and reset delay time are outside the specification, the power-on reset (POR) condition can be missed and device can lock up.

#### Table 12. Recommended supply sequencing and ramp rates

 $T_{amb}$  = 25 °C (unless otherwise noted). Not tested; specified by design.

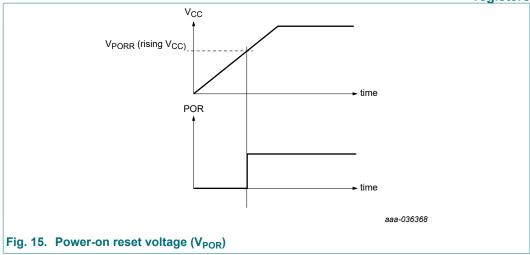

| Symbol              | Parameter             | Condition                                                  | T <sub>amb</sub> = 25 °C |     |      | Unit |
|---------------------|-----------------------|------------------------------------------------------------|--------------------------|-----|------|------|
|                     |                       |                                                            | Min                      | Тур | Max  |      |
| $t_{rise(V_{CC})}$  | supply ramp-up time   | Fig. 14                                                    | 0.1                      | -   | 2000 | ms   |
| $t_{fall(V_{CC})}$  | supply ramp-down time | Fig. 14                                                    | 0.1                      | -   | 2000 | ms   |
| t <sub>d(rst)</sub> | reset delay time      | Fig. 14; re-ramp time<br>when V <sub>CC</sub> drops to GND | 300                      | -   | -    | ms   |

Fig. 14 shows supply ramp-up, ramp-down and reset delay time.



 $V_{PORR}$  is the voltage level of  $V_{CC}$  at which the reset condition is released and all the registers and the I<sup>2</sup>C-bus/SMBus state machine are initialized to their default states.

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers



## 9. Limiting values

#### Table 13. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol              | Parameter                     | Conditions                            | Min  | Max  | Unit |
|---------------------|-------------------------------|---------------------------------------|------|------|------|
| V <sub>CC</sub>     | supply voltage                |                                       | -0.5 | 6    | V    |
| VI                  | input voltage                 | [1]                                   | -0.5 | 6    | V    |
| Vo                  | output voltage                | [1]                                   | -0.5 | 6    | V    |
| I <sub>IK</sub>     | input clamping current        | A0, A1, A2, SCL; V <sub>I</sub> < 0 V | -    | -20  | mA   |
| I <sub>OK</sub>     | output clamping current       | INT; V <sub>O</sub> < 0 V             | -    | -20  | mA   |
| I <sub>IOK</sub>    | input/output clamping current | P port; $V_0 < 0$ V or $V_0 > V_{CC}$ | -    | ±20  | mA   |
|                     |                               | SDA; V <sub>O</sub> < 0 V             | -    | -20  | mA   |
| I <sub>OL</sub>     | LOW-level output current      | continuous; I/O port                  | -    | 50   | mA   |
|                     |                               | continuous; SDA, INT                  | -    | 25   | mA   |
| I <sub>OH</sub>     | HIGH-level output current     | continuous; P port                    | -    | 25   | mA   |
| I <sub>CC</sub>     | supply current                |                                       | -    | 160  | mA   |
| I <sub>GND</sub>    | ground supply current         |                                       | -    | 250  | mA   |
| P <sub>tot</sub>    | total power dissipation       |                                       | -    | 200  | mW   |
| T <sub>stg</sub>    | storage temperature           |                                       | -65  | +150 | °C   |
| T <sub>j(max)</sub> | maximum junction temperature  |                                       | -    | 100  | °C   |

[1] The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

## PCA9535

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

## 10. Recommended operating conditions

| Table 14. (      | Operating conditions      |                          |                       |                       |      |
|------------------|---------------------------|--------------------------|-----------------------|-----------------------|------|
| Symbol           | Parameter                 | Conditions               | Min                   | Мах                   | Unit |
| V <sub>CC</sub>  | supply voltage            |                          | 2.3                   | 5.5                   | V    |
| V <sub>IH</sub>  | HIGH-level input voltage  | SCL, SDA                 | 0.7 × V <sub>CC</sub> | 5.5                   | V    |
|                  |                           | P1_7 to P0_0             | 0.7 × V <sub>CC</sub> | 5.5                   | V    |
|                  |                           | A0, A1, A2,              | 0.7 × V <sub>CC</sub> | V <sub>CC</sub>       | V    |
| V <sub>IL</sub>  | LOW-level input voltage   | SCL, SDA                 | -0.5                  | 0.3 × V <sub>CC</sub> | V    |
|                  |                           | A0, A1, A2, P1_7 to P0_0 | -0.5                  | 0.3 × V <sub>CC</sub> | V    |
| I <sub>OH</sub>  | HIGH-level output current | P1_7 to P0_0             | -                     | 10                    | mA   |
| l <sub>ol</sub>  | LOW-level output current  | P1_7 to P0_0             | -                     | 25                    | mA   |
| T <sub>amb</sub> | ambient temperature       | operating in free air    | -40                   | +85                   | °C   |

## **11. Thermal characteristics**

| Table 15. Th         | nermal characteristics                               |                     |     |      |
|----------------------|------------------------------------------------------|---------------------|-----|------|
| Symbol               | Parameter                                            | Conditions          | Мах | Unit |
| Z <sub>th(j-a)</sub> | transient thermal impedance from junction to ambient | TSSOP24 package [1] | 100 | K/W  |

[1] The package thermal impedance is calculated in accordance with JESD 51-7.

PCA9535

## PCA9535

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

## **12. Static characteristics**

#### **Table 16. Static characteristics**

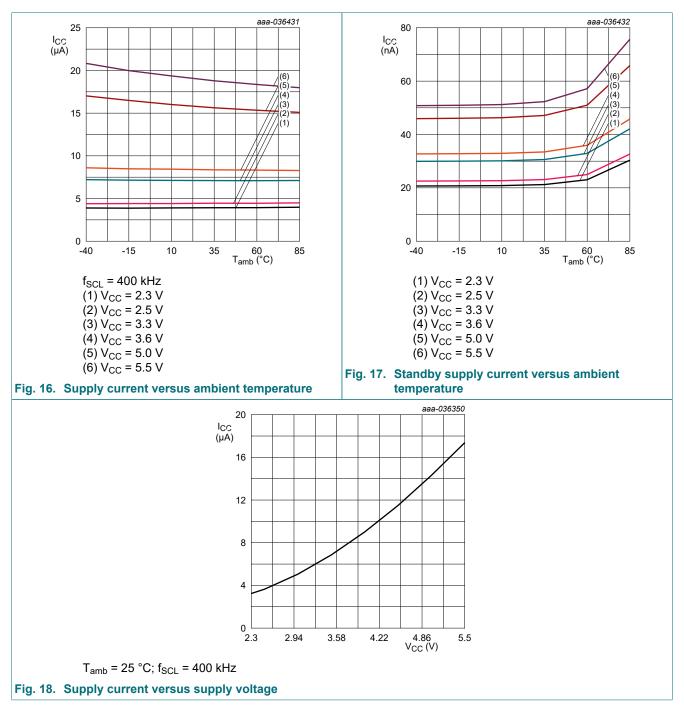
 $V_{CC}$  = 2.3 V to 5.5 V; unless otherwise specified.

| Symbol            | Parameter                                    | Conditions                                            |     | T <sub>amb</sub> = | -40 °C to           | +85 °C | Unit |
|-------------------|----------------------------------------------|-------------------------------------------------------|-----|--------------------|---------------------|--------|------|
|                   |                                              |                                                       |     | Min                | Typ [1]             | Max    | 1    |
| V <sub>IK</sub>   | input clamping voltage                       | I <sub>I</sub> = -18 mA                               |     | -1.2               | -                   | -      | V    |
| V <sub>PORR</sub> | power-on reset trip voltage; $V_{CC}$ rising | $V_{I} = V_{CC} \text{ or GND}; I_{O} = 0 \text{ mA}$ |     | -                  | 1.25                | 1.55   | V    |
| I <sub>OL</sub>   | LOW-level output current                     | $V_{OL}$ = 0.4 V; $V_{CC}$ = 2.3 V to 5.5 V           |     |                    |                     |        |      |
|                   |                                              | SDA                                                   |     | 3                  | -                   | -      | mA   |
|                   |                                              | INT                                                   |     | 3                  | 28 <mark>[2]</mark> | -      | mA   |
|                   |                                              | P port                                                |     |                    |                     |        |      |
|                   |                                              | V <sub>OL</sub> = 0.5 V; V <sub>CC</sub> = 2.3 V      | [3] | 8                  | -                   | -      | mA   |
|                   |                                              | V <sub>OL</sub> = 0.7 V; V <sub>CC</sub> = 2.3 V      | [3] | 10                 | -                   | -      | mA   |
|                   |                                              | V <sub>OL</sub> = 0.5 V; V <sub>CC</sub> = 3.0 V      | [3] | 8                  | -                   | -      | mA   |
|                   |                                              | V <sub>OL</sub> = 0.7 V; V <sub>CC</sub> = 3.0 V      | [3] | 10                 | -                   | -      | mA   |
|                   |                                              | V <sub>OL</sub> = 0.5 V; V <sub>CC</sub> = 4.5 V      | [3] | 8                  | -                   | -      | mA   |
|                   |                                              | V <sub>OL</sub> = 0.7 V; V <sub>CC</sub> = 4.5 V      | [3] | 10                 | -                   | -      | mA   |
| V <sub>OH</sub>   | HIGH-level output voltage                    | P port                                                |     |                    |                     |        |      |
|                   |                                              | I <sub>OH</sub> = -8 mA; V <sub>CC</sub> = 2.3 V      | [4] | 2.0                | -                   | -      | V    |
|                   |                                              | I <sub>OH</sub> = -10 mA; V <sub>CC</sub> = 2.3 V     | [4] | 1.9                | -                   | -      | V    |
|                   |                                              | I <sub>OH</sub> = -8 mA; V <sub>CC</sub> = 3.0 V      | [4] | 2.6                | -                   | -      | V    |
|                   |                                              | I <sub>OH</sub> = -10 mA; V <sub>CC</sub> = 3.0 V     | [4] | 2.5                | -                   | -      | V    |
|                   |                                              | I <sub>OH</sub> = -8 mA; V <sub>CC</sub> = 4.5 V      | [4] | 4.1                | -                   | -      | V    |
|                   |                                              | I <sub>OH</sub> = -10 mA; V <sub>CC</sub> = 4.5 V     | [4] | 4.0                | -                   | -      | V    |
| V <sub>OL</sub>   | LOW-level output voltage                     | P port; I <sub>OL</sub> = 8 mA                        |     |                    |                     |        |      |
|                   |                                              | V <sub>CC</sub> = 2.3 V                               |     | -                  | -                   | 0.30   | V    |
|                   |                                              | V <sub>CC</sub> = 3.0 V                               |     | -                  | -                   | 0.25   | V    |
|                   |                                              | V <sub>CC</sub> = 4.5 V                               |     | -                  | -                   | 0.2    | V    |
| l <sub>l</sub>    | input current                                | V <sub>CC</sub> = 2.3 V to 5.5 V                      |     |                    |                     |        |      |
|                   |                                              | SCL, SDA; V <sub>I</sub> = V <sub>CC</sub> or GND     |     | -                  | -                   | 1      | μA   |
|                   |                                              | A0, A1, A2; $V_I = V_{CC}$ or GND                     |     | -                  | -                   | ±1     | μA   |
| I <sub>IH</sub>   | HIGH-level input current                     | P port; $V_1 = V_{CC}$ ; $V_{CC} = 2.3$ V to 5.5 V    |     | -                  | -                   | 1      | μA   |
| IIL               | LOW-level input current                      | P port; $V_1$ = GND; $V_{CC}$ = 2.3 V to 5.5 V        |     | -                  | -                   | -1     | μA   |

## PCA9535

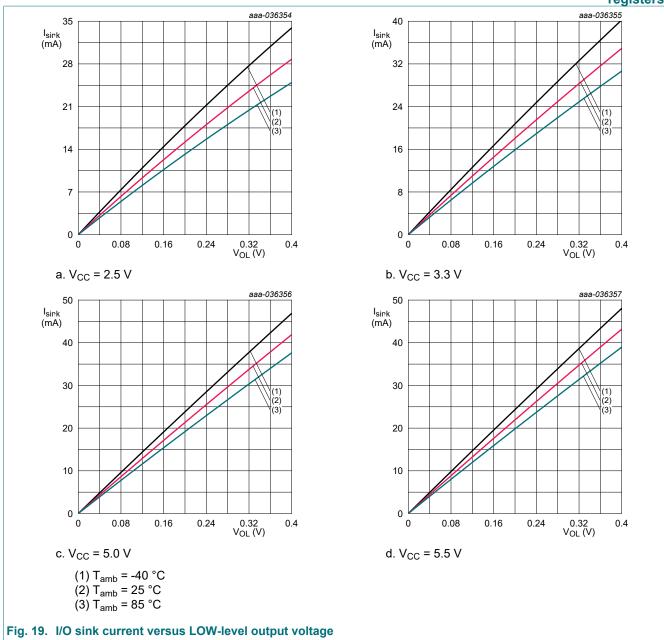
## Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration

| Symbol           | Parameter                                                                                                                                                                                                    | Conditions                                                                                                                                                                                                        | T   | -40 °C to |     | Unit |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|-----|------|
| Oymbol           | i arameter                                                                                                                                                                                                   | Conditions                                                                                                                                                                                                        |     |           |     |      |
|                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                   | Min | Тур [1]   | Мах |      |
| I <sub>CC</sub>  | supply current                                                                                                                                                                                               | SDA, P port, A0, A1, A2;<br>$V_1$ on SDA = $V_{CC}$ or GND;<br>$V_1$ on P port and A0, A1, A2 = $V_{CC}$ ;<br>$I_0$ = 0 mA; I/O = inputs; $f_{SCL}$ = 400 kHz<br>( $t_r$ = 30 ns)                                 |     |           |     |      |
|                  |                                                                                                                                                                                                              | V <sub>CC</sub> = 3.6 V to 5.5 V                                                                                                                                                                                  | -   | 13        | 28  | μA   |
|                  |                                                                                                                                                                                                              | V <sub>CC</sub> = 2.3 V to 3.6 V                                                                                                                                                                                  | -   | 6.4       | 11  | μA   |
|                  | SCL, SDA, P port, A0, A1, A2;<br>V <sub>I</sub> on SCL, SDA = V <sub>CC</sub> or GND;<br>V <sub>I</sub> on P port and A0, A1, A2 = V <sub>CC</sub> ;<br>$I_O = 0$ mA; I/O = inputs; f <sub>SCL</sub> = 0 kHz |                                                                                                                                                                                                                   |     |           |     |      |
|                  |                                                                                                                                                                                                              | V <sub>CC</sub> = 2.3 V to 5.5 V                                                                                                                                                                                  | -   | -         | 1   | μA   |
|                  |                                                                                                                                                                                                              | Active mode; P port, A0, A1, A2;<br>V <sub>I</sub> on P port, A0, A1, A2 = V <sub>CC</sub> ;<br>I <sub>O</sub> = 0 mA; I/O = inputs;<br>$f_{SCL}$ = 400 kHz (t <sub>r</sub> = 30 ns), continuous<br>register read |     |           |     |      |
|                  |                                                                                                                                                                                                              | V <sub>CC</sub> = 3.6 V to 5.5 V                                                                                                                                                                                  | -   | 15        | 55  | μA   |
|                  |                                                                                                                                                                                                              | V <sub>CC</sub> = 2.3 V to 3.6 V                                                                                                                                                                                  | -   | 7.4       | 22  | μA   |
| ΔI <sub>CC</sub> | additional quiescent supply current                                                                                                                                                                          | SCL, SDA; one input at V <sub>CC</sub> - 0.6 V, other inputs at V <sub>CC</sub> or GND; V <sub>CC</sub> = 2.3 V to 5.5 V                                                                                          | -   | -         | 4.5 | μA   |
|                  |                                                                                                                                                                                                              | P port, A0, A1, A2; one input at $V_{CC}$ - 0.6 V,<br>other inputs at $V_{CC}$ or GND;<br>$V_{CC}$ = 2.3 V to 5.5 V                                                                                               | -   | -         | 13  | μA   |
| Ci               | input capacitance                                                                                                                                                                                            | $V_{I} = V_{CC}$ or GND; $V_{CC} = 2.3$ V to 5.5 V                                                                                                                                                                | -   | 1.5       | 2.5 | pF   |
| Cio              | input/output capacitance                                                                                                                                                                                     | $V_{I/O} = V_{CC}$ or GND; $V_D = 2.3$ V to 5.5 V                                                                                                                                                                 | -   | 3         | 4.5 | pF   |

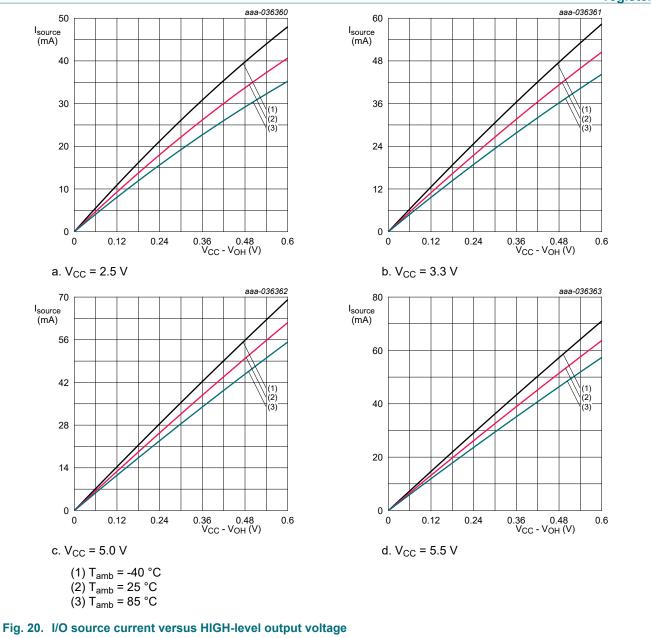

For I<sub>CC</sub>, all typical values are at nominal supply voltage (3.3 V or 5 V V<sub>CC</sub>) and T<sub>amb</sub> = 25 °C. Except for I<sub>CC</sub>, the typical values are at [1]  $V_{CC} = 3.3 \text{ V}$  and  $T_{amb} = 25 ^{\circ}\text{C}$ . Typical values for  $T_{amb} = 25 ^{\circ}\text{C}$ .  $V_{OL} = 0.4 \text{ V}$  and  $V_{CC} = 3.3 \text{ V}$ . Each I/O must be externally limited to a maximum of 25 mA and the device must be limited to a maximum current of 200 mA.

[2]

[3]


The total current sourced by all I/Os must be limited to 160 mA. [4]

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

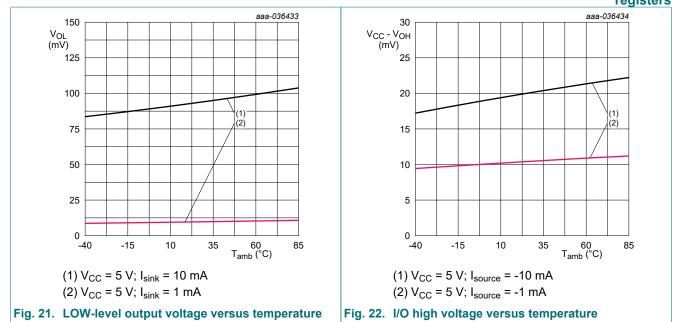



## 12.1. Typical characteristics

## Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers



Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers




**Product data sheet** 

© Nexperia B.V. 2024. All rights reserved

## PCA9535

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

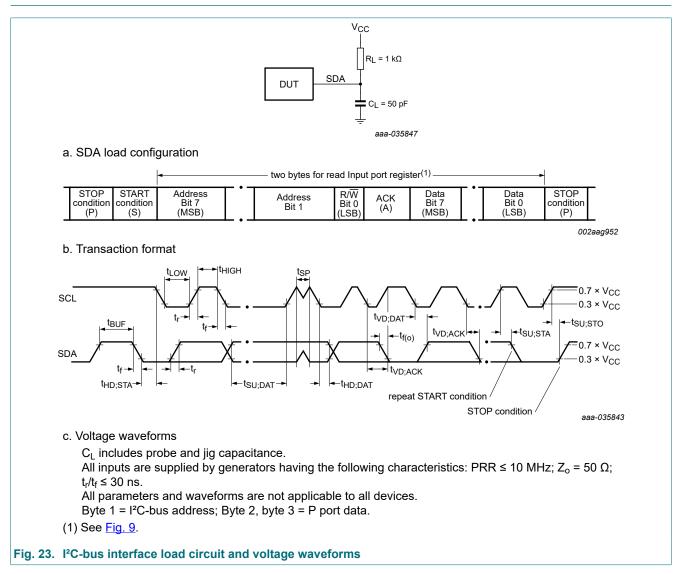


## **13. Dynamic characteristics**

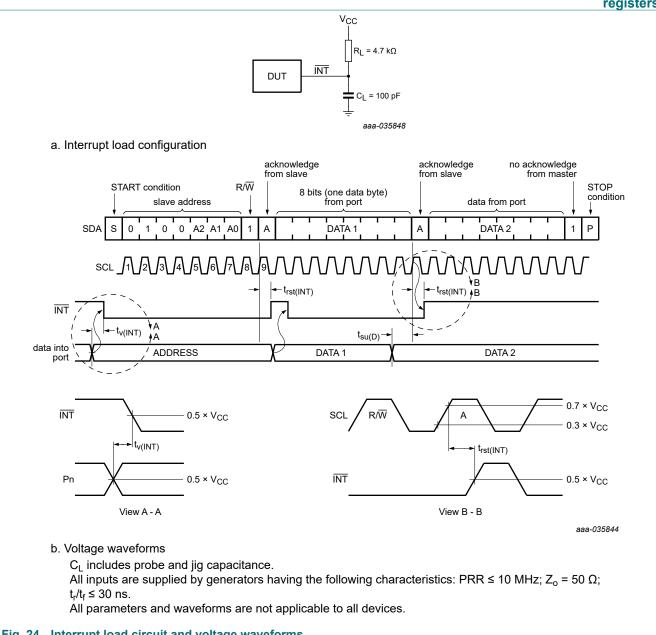
#### Table 17. I<sup>2</sup>C-bus interface timing requirements

Over recommended operating free air temperature range, unless otherwise specified. See Fig. 23.

| Symbol              | Parameter                                                         | Conditions                                     |     | rd-mode<br>⋅bus | Fast-mode<br>I²C-bus           |     | Unit |
|---------------------|-------------------------------------------------------------------|------------------------------------------------|-----|-----------------|--------------------------------|-----|------|
|                     |                                                                   |                                                | Min | Max             | Min                            | Мах | 1    |
| f <sub>SCL</sub>    | SCL clock frequency                                               |                                                | 0   | 100             | 0                              | 400 | kHz  |
| t <sub>HIGH</sub>   | HIGH period of the SCL clock                                      |                                                | 4   | -               | 0.6                            | -   | μs   |
| t <sub>LOW</sub>    | LOW period of the SCL clock                                       |                                                | 4.7 | -               | 1.3                            | -   | μs   |
| t <sub>SP</sub>     | pulse width of spikes that must be suppressed by the input filter |                                                | 0   | 50              | 0                              | 50  | ns   |
| t <sub>SU;DAT</sub> | data set-up time                                                  |                                                | 250 | -               | 100                            | -   | ns   |
| t <sub>HD;DAT</sub> | data hold time                                                    |                                                | 0   | -               | 0                              | -   | ns   |
| t <sub>r</sub>      | rise time of both SDA and SCL signals                             |                                                | -   | 1000            | 20                             | 300 | ns   |
| t <sub>f</sub>      | fall time of both SDA and SCL signals                             |                                                | -   | 300             | 20x(V <sub>CC</sub> /5.5<br>V) | 300 | ns   |
| t <sub>BUF</sub>    | bus free time between a STOP and START condition                  |                                                | 4.7 | -               | 1.3                            | -   | μs   |
| t <sub>SU;STA</sub> | set-up time for a repeated START condition                        |                                                | 4.7 | -               | 0.6                            | -   | μs   |
| t <sub>HD;STA</sub> | hold time (repeated) START condition                              |                                                | 4   | -               | 0.6                            | -   | μs   |
| t <sub>su;sто</sub> | set-up time for STOP condition                                    |                                                | 4   | -               | 0.6                            | -   | μs   |
| t <sub>VD;DAT</sub> | data valid time                                                   | SCL LOW to SDA output valid                    | -   | 3.45            | -                              | 0.9 | μs   |
| t <sub>VD;ACK</sub> | data valid acknowledge time                                       | ACK signal from<br>SCL LOW to SDA<br>(out) LOW | -   | 3.45            | -                              | 0.9 | μs   |


## Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

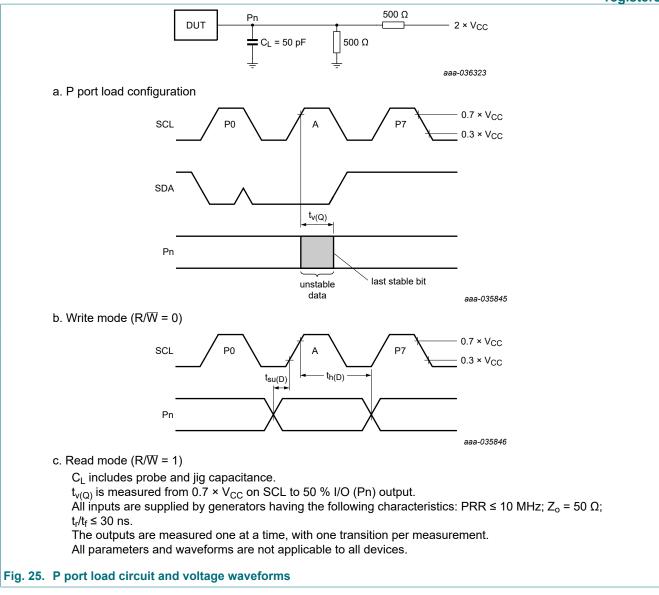
#### Table 18. Switching characteristics


Over recommended operating free air temperature range;  $C_L \le 100 \text{ pF}$ ; unless otherwise specified. See Fig. 24.

| Symbol                | Parameter              | Conditions         |     | rd-mode<br>bus | Fast-mode<br>I²C-bus |     | Unit |
|-----------------------|------------------------|--------------------|-----|----------------|----------------------|-----|------|
|                       |                        |                    | Min | Max            | Min                  | Max |      |
| t <sub>v(INT)</sub>   | valid time on pin INT  | from P port to INT | -   | 1              | -                    | 1   | μs   |
| t <sub>rst(INT)</sub> | reset time on pin INT  | from SCL to INT    | -   | 1              | -                    | 1   | μs   |
| t <sub>v(Q)</sub>     | data output valid time | from SCL to P port | -   | 185            | -                    | 185 | ns   |
| t <sub>su(D)</sub>    | data input set-up time | from P port to SCL | -50 | -              | -50                  | -   | ns   |
| t <sub>h(D)</sub>     | data input hold time   | from P port to SCL | 240 | -              | 240                  | -   | ns   |

## 14. Parameter measurement information

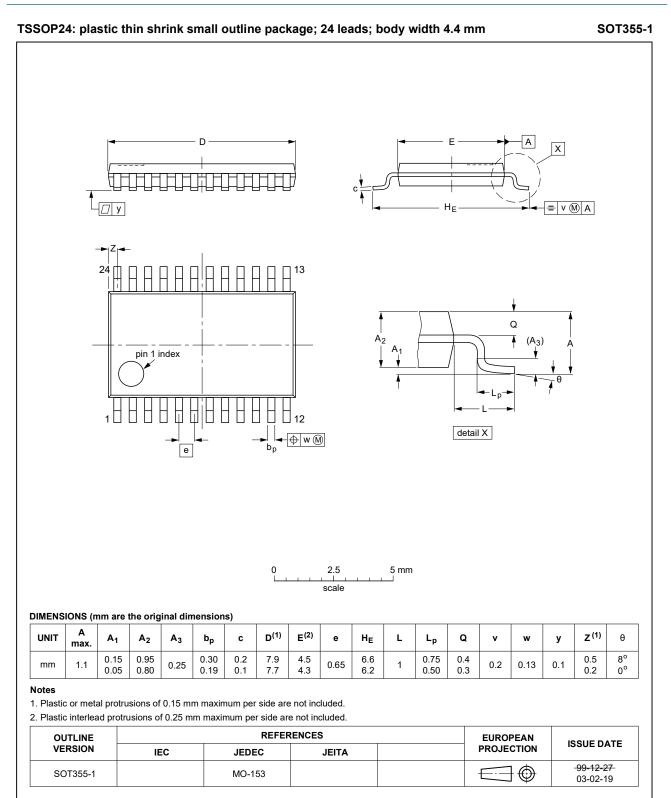



Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers





#### **Nexperia**


Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers



## PCA9535

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

## 15. Package outline



#### Fig. 26. Package outline SOT355-1 (TSSOP24)

## PCA9535

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

## 16. Abbreviations

| Acronym | Description                                |
|---------|--------------------------------------------|
| ACPI    | Advanced Configuration and Power Interface |
| ANSI    | American National Standards Institute      |
| CBT     | Cross-Bar Technology                       |
| CDM     | Charged-Device Model                       |
| CMOS    | Complementary Metal-Oxide Semiconductor    |
| ESD     | ElectroStatic Discharge                    |
| ESDA    | ElectroStatic Discharge Association        |
| FET     | Field-Effect Transistor                    |
| FF      | Flip-Flop                                  |
| GPIO    | General Purpose Input/Output               |
| HBM     | Human Body Model                           |
| I²C-bus | Inter-Integrated Circuit bus               |
| I/O     | Input/Output                               |
| JEDEC   | Joint Electron Device Engineering Council  |
| LED     | Light-Emitting Diode                       |
| SMBus   | System Management Bus                      |

## 17. Revision history

#### Table 20. Revision history

| Document ID   | Release date | Data sheet status  | Change notice | Supersedes  |
|---------------|--------------|--------------------|---------------|-------------|
| PCA9535 v.1.1 | 20240801     | Product data sheet | -             | PCA9535 v.1 |
| PCA9535 v.1   | 20230425     | Product data sheet | -             | -           |

## 18. Legal information

#### **Data sheet status**

| Document status<br>[1][2]         | Product<br>status [3] | Definition                                                                            |
|-----------------------------------|-----------------------|---------------------------------------------------------------------------------------|
| Objective [short]<br>data sheet   | Development           | This document contains data from the objective specification for product development. |
| Preliminary [short]<br>data sheet | Qualification         | This document contains data from the preliminary specification.                       |
| Product [short]<br>data sheet     | Production            | This document contains the product specification.                                     |

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

#### **Definitions**

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### **Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

**Right to make changes** — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

## PCA9535

Low-voltage 16-bit I<sup>2</sup>C and SMBus low-power I/O expander with interrupt output and configuration registers

## Contents

| 1. General description                                     | 1  |
|------------------------------------------------------------|----|
| 2. Features and benefits                                   | 1  |
| 3. Ordering information                                    | 2  |
| 4. Block diagram                                           | 2  |
| 5. Pinning information                                     | 3  |
| 5.1. Pinning                                               | 3  |
| 5.2. Pin description                                       | 3  |
| 6. Functional description                                  | 4  |
| 6.1. Device address                                        | 4  |
| 6.2. Registers                                             | 4  |
| 6.2.1. Pointer register and command byte                   | 4  |
| 6.2.2. Input port register pair (00h, 01h)                 | 5  |
| 6.2.3. Output port register pair (02h, 03h)                | 5  |
| 6.2.4. Polarity inversion register pair (04h, 05h)         | 6  |
| 6.2.5. Configuration register pair (06h, 07h)              | 6  |
| 6.3. I/O port                                              | 7  |
| 6.4. Power-on reset                                        | 8  |
| 6.5. Interrupt output                                      | 8  |
| 7. Bus transactions                                        | 8  |
| 7.1. Writing to the port registers                         | 8  |
| 7.2. Reading the port registers                            | 10 |
| 8. Application design-in information                       | 13 |
| 8.1. Minimizing $I_{CC}$ when the I/Os are used to control |    |
| Ordering information                                       |    |
|                                                            |    |
|                                                            |    |
|                                                            |    |
|                                                            |    |
|                                                            |    |
|                                                            |    |
| -                                                          |    |
|                                                            |    |
| -                                                          |    |
|                                                            |    |
| -                                                          |    |
| 1X Logal information                                       |    |

© Nexperia B.V. 2024. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 1 August 2024



## **OUR CERTIFICATE**

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

| DCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA NOS1 NA A                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUALITY MANAGEMENT SYSTEM<br>CERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENVIRONMENTAL MANAGEMENT SYSTEM<br>CERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OCCUPATIONAL HEALTH & SAFETY<br>MANAGEMENT SYSTEM CERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 心可生存证明者<br>CERTIFICATE OF INCORPORATION                                                                                                                                                                                                                                                                                                                                             |
| DIGI ELECTRONICS HK LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIGI ELECTRONICS HK LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DIGI ELECTRONICS HK LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A B B - +<br>I have by small y that                                                                                                                                                                                                                                                                                                                                                 |
| RATINGS 355, 10 KING COMPETING AND A REAL AND STREET, MONGHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FLATERALIS 397, HO HONG COMPRESSION AMOUNT A MUCH STREET, MONGRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLATERALIS 267, NO HANG CONVERTING AND THE 2 HERA VIEW STREET, INCHORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DELLE ACTIONCY INC. AMTES<br>均衡電子指導作符合可                                                                                                                                                                                                                                                                                                                                             |
| GB/T 19001-2016 ktt ISO9001:2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GB/T 24001-2016 idt ISO14001:2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RUMANDO 2011 IO NOD COMPARING CONTRA 5 16 Y VAN STREET, MONINO<br>R. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0 \rightarrow 0$ if if $0 \rightarrow 0$ is $0 \rightarrow 0$ if $1 \ge 0 \le 0 \Rightarrow 0 \Rightarrow 0$<br>is DNs day becomestical in Kang Kang under the Comparison Delivarian<br>$A \rightarrow 0 \Rightarrow A \rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$<br>(Effective E2) of the Laws of Hears Rough, and Hear Bits Compary is |
| Radies of electronic components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Select of dimension compared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Refer of elements compares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1944)44 BE of the Laws of Hang Bong, and Ball Bas company is<br>${\mathbb T}$ .<br>${\mathbb R}$ ,<br>${\mathbb T}$ .<br>The Ball company,                                                                                                                                                                                                                                         |
| tantanaturate<br>anter monore trais<br>monoretarate la manetaria de la manetaria<br>de la manetaria de la manetaria de la manetaria<br>de la manetaria de la manetaria de la manetaria de la manetaria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tartina Name<br>Participation (New Strendspring<br>A an AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bethallheim<br>antariana beat can<br>Natural and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 # 4 # # ± 0 − Λ + − Λ ± + ± + ± ± +<br>NetWO 06 32 James 200.                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Levelen And Face Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | €2445014.01.0-61164,8,468,80<br>Mo.Au.1.1.02050<br>Parglaphara al Canyantas<br>Mag Spart Annimistrativ Ragion                                                                                                                                                                                                                                                                       |
| Control of the second sec | For the second s | Control traces for the first section of the fi | In Hop:<br>이 진 실 4년 3 근 카이트 토가에 · 프 + A. 비행 / 1 위 · 의 · 의 · A. 비행 / 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이                                                                                                                                                                                                                                                                           |





Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.