

PH4840S,115 Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number PH4840S,115-DG

Manufacturer Nexperia USA Inc.

Manufacturer Product Number PH4840S,115

Description MOSFET N-CH 40V 94.5A LFPAK56

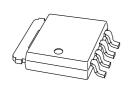
Detailed Description N-Channel 40 V 94.5A (Tc) 62.5W (Tc) Surface Moun

t LFPAK56, Power-SO8

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.



Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
PH4840S,115	Nexperia USA Inc.
Series:	Product Status:
TrenchMOS™	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
40 V	94.5A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
7V, 10V	4.1mOhm @ 25A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
3V @ 1mA	67 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	3660 pF @ 10 V
FET Feature:	Power Dissipation (Max):
	62.5W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
LFPAK56, Power-SO8	SC-100, SOT-669

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

PH4840S

N-channel TrenchMOS intermediate level FET Rev. 02 — 6 November 2006

Product data sheet

Product profile

1.1 General description

N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology.

1.2 Features

- Low thermal resistance
- Low threshold voltage
- SO8 equivalent area footprint
- Low on-state resistance

1.3 Applications

- DC-to-DC converters
- Portable appliances
- DC motor drives

- Switched-mode power supplies
- Notebook computers

1.4 Quick reference data

- $V_{DS} \le 40 \text{ V}$
- \blacksquare R_{DSon} $\leq 4.1 \text{ m}\Omega$

- $I_D \le 94.5 \text{ A}$
- Arr P_{tot} \leq 62.5 W

Pinning information

Table 1. **Pinning**

Pin	Description	Simplified outline	Symbol
1, 2, 3	source (S)		_
4	gate (G)	υ υ υ 1 2 3 4	D
mb			G
		SOT669 (LFPAK)	

N-channel TrenchMOS intermediate level FET

3. Ordering information

Table 2. Ordering information

Type number	Package	ackage				
	Name	Description	Version			
PH4840S	LFPAK	plastic single-ended surface-mounted package; 4 leads	SOT669			

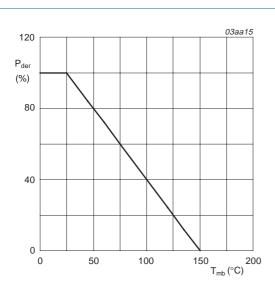
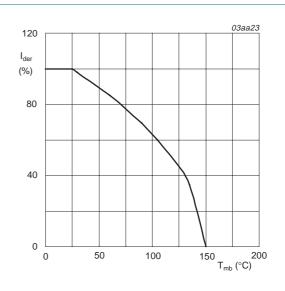

4. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	25 °C ≤ T _j ≤ 150 °C	-	40	V
V_{GS}	gate-source voltage		-	±20	V
I _D	drain current	$T_{mb} = 25 ^{\circ}\text{C}$; $V_{GS} = 10 \text{V}$; see Figure 2 and 3	-	94.5	Α
		$T_{mb} = 100 ^{\circ}\text{C}$; $V_{GS} = 10 \text{V}$; see Figure 2	-	59.5	Α
I_{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \mu s$; see Figure 3	-	283	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 1</u>	-	62.5	W
T _{stg}	storage temperature		– 55	+150	°C
Tj	junction temperature		-55	+150	°C
Source-	drain diode				
Is	source current	$T_{mb} = 25 ^{\circ}C$	-	52	Α
I _{SM}	peak source current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \mu s$	-	150	Α
Avalanc	he ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	unclamped inductive load; I_D = 51 A; t_p = 0.21 ms; $V_{DS} \le$ 40 V; V_{GS} = 10 V; starting at T_j = 25 °C	-	250	mJ

N-channel TrenchMOS intermediate level FET

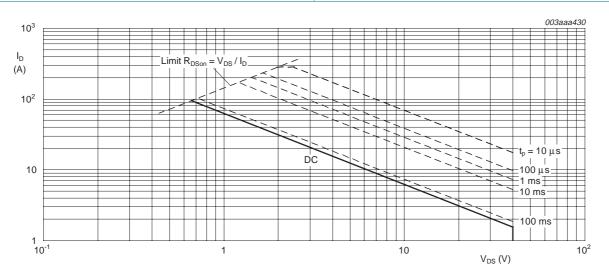

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

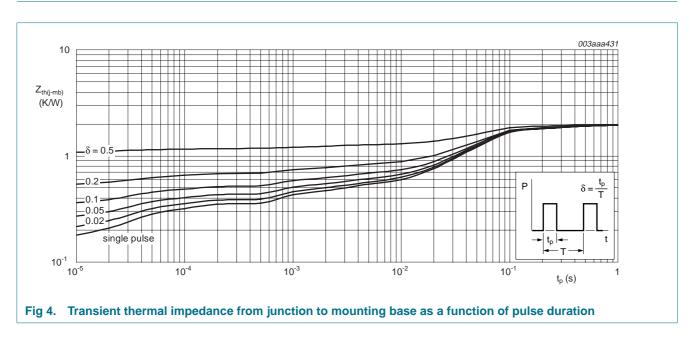
Fig 1. Normalized total power dissipation as a function of mounting base temperature

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100 \%$$

Fig 2. Normalized continuous drain current as a function of mounting base temperature

 T_{mb} = 25 °C; I_{DM} is single pulse; V_{GS} = 10 V

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage


3 of 12

N-channel TrenchMOS intermediate level FET

5. Thermal characteristics

Table 4. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	2	K/W

N-channel TrenchMOS intermediate level FET

6. Characteristics

Table 5. Characteristics

 $T_j = 25 \,^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static ch	Static characteristics					
V _{(BR)DSS}	drain-source breakdown voltage	$I_D = 250 \mu A; V_{GS} = 0 V$	40	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; see <u>Figure 9</u> and <u>10</u>				
		T _j = 25 °C	1	2	3	V
		T _j = 150 °C	0.5	-	-	V
		$T_j = -55 ^{\circ}C$	-	-	2.2	V
I_{DSS}	drain leakage current	$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	0.06	1	μΑ
		T _j = 150 °C	-	-	500	μΑ
I_{GSS}	gate leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$	-	2	100	nA
R_{DSon}	drain-source on-state	$V_{GS} = 10 \text{ V}$; $I_D = 25 \text{ A}$; see Figure 6 and 8				
	resistance	T _j = 25 °C	-	3.5	4.1	$m\Omega$
		T _j = 150 °C	-	5.6	7.0	$m\Omega$
		$V_{GS} = 7 \text{ V}$; $I_D = 25 \text{ A}$; see Figure 6 and 8	-	3.85	4.8	$m\Omega$
Dynamic	characteristics					
$Q_{G(tot)}$	total gate charge	$I_D = 30 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 10 \text{ V};$	-	67	-	nC
Q_GS	gate-source charge	see Figure 11 and 12	-	8.6	-	nC
Q_GD	gate-drain charge		-	16	-	nC
C_{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 10 \text{ V}; f = 1 \text{ MHz};$	-	3660	-	pF
C_{oss}	output capacitance	see Figure 14	-	877	-	pF
C_{rss}	reverse transfer capacitance		-	454	-	pF
$t_{d(on)}$	turn-on delay time	$V_{DS} = 20 \text{ V}; I_D = 25 \Omega; V_{GS} = 10 \text{ V};$	-	21	-	ns
t_{r}	rise time	$R_G = 4.7 \Omega$	-	35	-	ns
$t_{\text{d(off)}}$	turn-off delay time		-	82	-	ns
t _f	fall time		-	31	-	ns
Source-	drain diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; see <u>Figure 13</u>	-	0.85	1.2	V
t _{rr}	reverse recovery time	$I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = 0 \text{ V}$	-	46	-	ns

N-channel TrenchMOS intermediate level FET

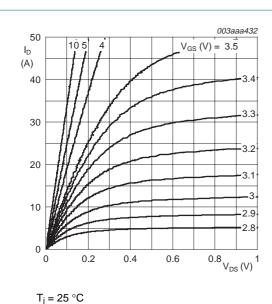
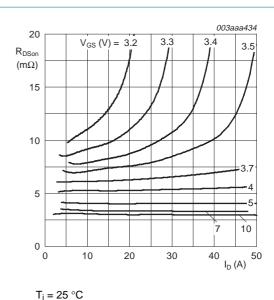
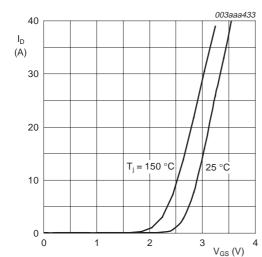
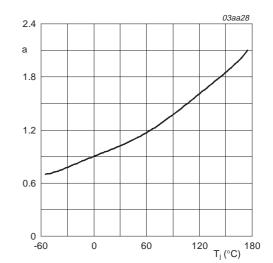
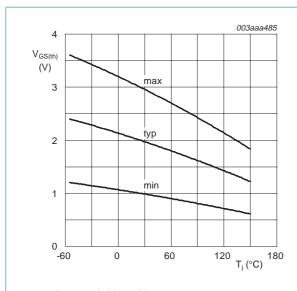


Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

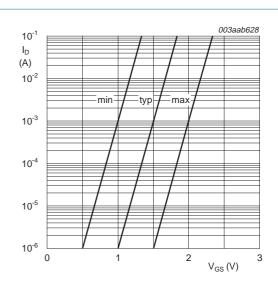




Fig 6. Drain-source on-state resistance as a function of drain current; typical values

 T_j = 25 °C and 150 °C; $V_{DS} > I_D \times R_{DSon}$


Fig 7. Transfer characteristics: drain current as a function of gate-source voltage; typical values

$$a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$$


Fig 8. Normalized drain-source on-state resistance factor as a function of junction temperature

N-channel TrenchMOS intermediate level FET

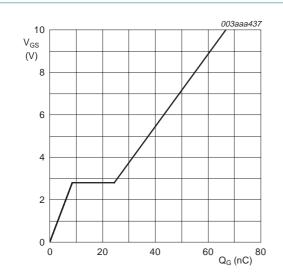

 $I_D = 1 \text{ mA}; V_{DS} = V_{GS}$

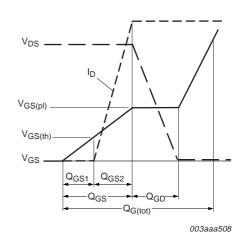
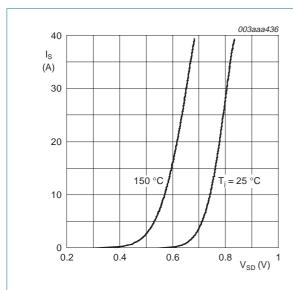
Fig 9. Gate-source threshold voltage as a function of junction temperature

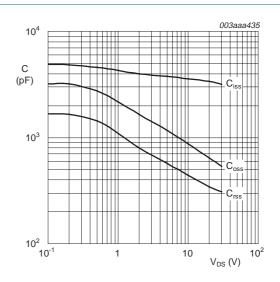
 $T_j = 25 \,^{\circ}\text{C}; \, V_{DS} = 5 \,^{\circ}\text{V}$

Fig 10. Sub-threshold drain current as a function of gate-source voltage

 $I_D = 30 \text{ A}; V_{DS} = 32 \text{ V}$

Fig 11. Gate-source voltage as a function of gate charge; typical values


Fig 12. Gate charge waveform definitions

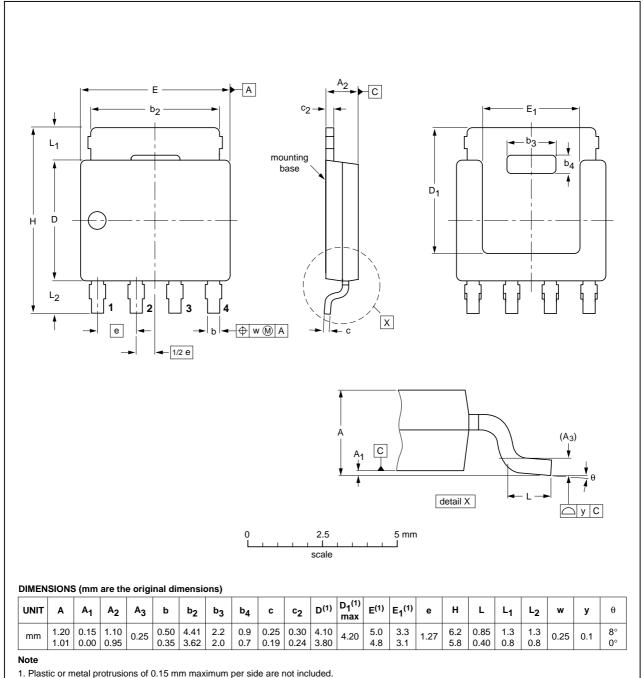
N-channel TrenchMOS intermediate level FET

 T_j = 25 °C and 150 °C; V_{GS} = 0 V

Fig 13. Source current as a function of source-drain voltage; typical values

 $V_{GS} = 0 V; f = 1 MHz$

Fig 14. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values


PH4840S NXP Semiconductors

N-channel TrenchMOS intermediate level FET

Package outline

Plastic single-ended surface-mounted package (LFPAK); 4 leads

SOT669

OUTLINE	REFERENCES			EUROPEAN	IOOUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT669		MO-235				04-10-13 06-03-16	

Fig 15. Package outline SOT669 (LFPAK)

© NXP B.V. 2006. All rights reserved.

N-channel TrenchMOS intermediate level FET

8. Revision history

Table 6. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PH4840S_2	20061106	Product data sheet	-	PH4840S-01
Modifications:		this data sheet has been NXP Semiconductors.	redesigned to comply	with the new identity
	 Legal texts have 	ave been adapted to the n	ew company name who	ere appropriate.
PH4840S-01 (9397 750 12814)	20040304	Preliminary data	-	-

N-channel TrenchMOS intermediate level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to

result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

N-channel TrenchMOS intermediate level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 9
8	Revision history 10
9	Legal information
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks11
10	Contact information 11
11	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935