


# 74AUP1T58GF,132 Datasheet





DiGi Electronics Part Number Manufacturer Manufacturer Product Number Description Detailed Description 74AUP1T58GF,132-DG NXP Semiconductors 74AUP1T58GF,132 NEXPERIA 74AUP1T58GF - LOGIC CIR Translator Circuit Channel

https://www.DiGi-Electronics.com



Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.



### **Purchase and inquiry**

Manufacturer Product Number: 74AUP1T58GF,132

Series:

\*

Base Product Number: 74AUP1T58

Manufacturer: NXP Semiconductors Product Status: Active

## **Environmental & Export classification**

#### Moisture Sensitivity Level (MSL):

Vendor Undefined

REACH Status:

**REACH Unaffected** 

# 74AUP1T58

Low-power configurable gate with voltage-level translator Rev. 8 — 26 July 2023 Product data sheet

### 1. General description

The 74AUP1T58 is a configurable multiple function gate with level translating, Schmitt-trigger inputs. The device can be configured as any of the following logic functions AND, OR, NAND, NOR, XOR, inverter and buffer; using the 3-bit input. All inputs can be connected directly to  $V_{CC}$  or GND. Low threshold Schmitt trigger inputs allow these devices to be driven by 1.8 V logic levels in 3.3 V applications.

This device ensures very low static and dynamic power consumption across the entire V<sub>CC</sub> range from 2.3 V to 3.6 V. This device is fully specified for partial power down applications using I<sub>OFF</sub>. The I<sub>OFF</sub> circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.

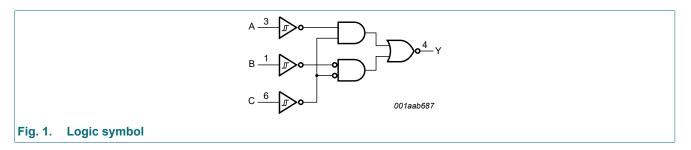
### 2. Features and benefits

- Wide supply voltage range from 2.3 V to 3.6 V
- High noise immunity
- Low static power consumption; I<sub>CC</sub> = 1.5 μA (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Overvoltage tolerant inputs to 3.6 V
- Low noise overshoot and undershoot < 10 % of  $V_{CC}$
- I<sub>OFF</sub> circuitry provides partial power-down mode operation
- ESD protection:
  - HBM: ANSI/ESDA/JEDEC JS-001 class 3A exceeds 5000 V
  - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

# 3. Ordering information

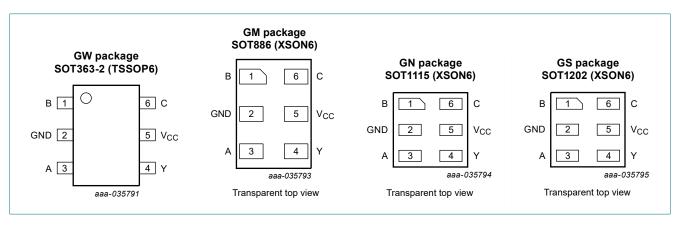
| Table 1. Ordering in | nformation        |         |                                                                                                |                 |  |  |  |  |  |  |
|----------------------|-------------------|---------|------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Type number          | Package           | Package |                                                                                                |                 |  |  |  |  |  |  |
|                      | Temperature range | Name    | Description                                                                                    | Version         |  |  |  |  |  |  |
| 74AUP1T58GW          | -40 °C to +125 °C | TSSOP6  | plastic thin shrink small outline package; 6 leads;<br>body width 1.25 mm                      | <u>SOT363-2</u> |  |  |  |  |  |  |
| 74AUP1T58GM          | -40 °C to +125 °C | XSON6   | plastic extremely thin small outline package; no leads;<br>6 terminals; body 1 × 1.45 × 0.5 mm | <u>SOT886</u>   |  |  |  |  |  |  |
| 74AUP1T58GN          | -40 °C to +125 °C | XSON6   | extremely thin small outline package; no leads;<br>6 terminals; body 0.9 × 1.0 × 0.35 mm       | <u>SOT1115</u>  |  |  |  |  |  |  |
| 74AUP1T58GS          | -40 °C to +125 °C | XSON6   | extremely thin small outline package; no leads;<br>6 terminals; body 1.0 × 1.0 × 0.35 mm       | <u>SOT1202</u>  |  |  |  |  |  |  |

# nexperia


#### Low-power configurable gate with voltage-level translator

## 4. Marking

| Table 2. Marking |                  |  |  |  |  |
|------------------|------------------|--|--|--|--|
| Type number      | Marking code [1] |  |  |  |  |
| 74AUP1T58GW      | a8               |  |  |  |  |
| 74AUP1T58GM      | a8               |  |  |  |  |
| 74AUP1T58GN      | a8               |  |  |  |  |
| 74AUP1T58GS      | a8               |  |  |  |  |


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

# 5. Functional diagram



# 6. Pinning information

### 6.1. Pinning



### 6.2. Pin description

| Table 3. Pin description |     |                |  |  |  |  |
|--------------------------|-----|----------------|--|--|--|--|
| Symbol                   | Pin | Description    |  |  |  |  |
| В                        | 1   | data input     |  |  |  |  |
| GND                      | 2   | ground (0 V)   |  |  |  |  |
| A                        | 3   | data input     |  |  |  |  |
| Y                        | 4   | data output    |  |  |  |  |
| V <sub>CC</sub>          | 5   | supply voltage |  |  |  |  |
| С                        | 6   | data input     |  |  |  |  |

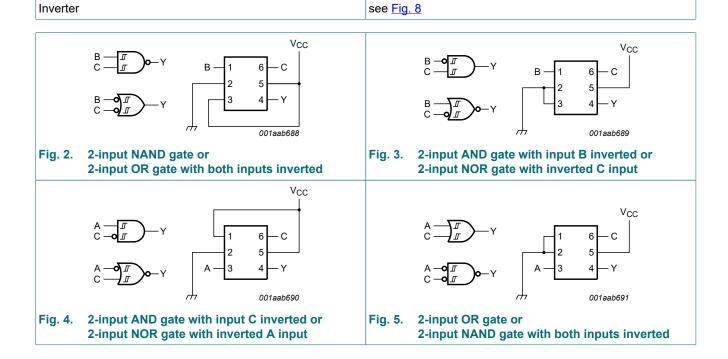
#### 74AUP1T58

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2023. All rights reserved

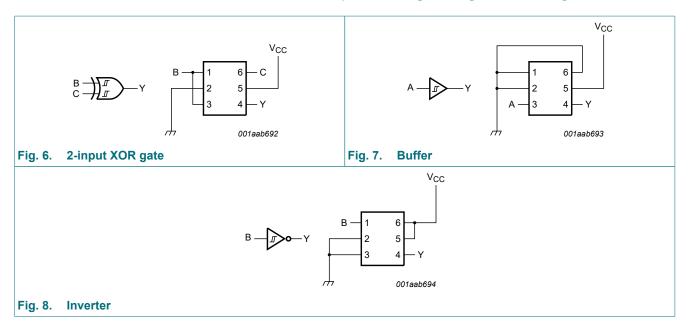
#### Low-power configurable gate with voltage-level translator

# 7. Functional description


#### **Table 4. Function table**

H = HIGH voltage level; L = LOW voltage level.

| Input |   |   | Output |
|-------|---|---|--------|
| C     | В | Α | Y      |
| L     | L | L | L      |
| L     | L | Н | Н      |
| L     | Н | L | L      |
| L     | Н | Н | Н      |
| Н     | L | L | Н      |
| Н     | L | Н | Н      |
| Н     | Н | L | L      |
| Н     | Н | Н | L      |


### 7.1. Logic configurations

| Table 5. Function selection table      |                                     |
|----------------------------------------|-------------------------------------|
| Logic function                         | Figure                              |
| 2-input NAND                           | see Fig. 2                          |
| 2-input NAND with both inputs inverted | see <u>Fig. 5</u>                   |
| 2-input AND with inverted input        | see <u>Fig. 3</u> and <u>Fig. 4</u> |
| 2-input NOR with inverted input        | see <u>Fig. 3</u> and <u>Fig. 4</u> |
| 2-input OR                             | see <u>Fig. 5</u>                   |
| 2-input OR with both inputs inverted   | see Fig. 2                          |
| 2-input XOR                            | see <u>Fig. 6</u>                   |
| Buffer                                 | see <u>Fig. 7</u>                   |



# 74AUP1T58

#### Low-power configurable gate with voltage-level translator



## 8. Limiting values

#### Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                                         | Min  | Max  | Unit |
|------------------|-------------------------|----------------------------------------------------|------|------|------|
| V <sub>CC</sub>  | supply voltage          |                                                    | -0.5 | +4.6 | V    |
| l <sub>IK</sub>  | input clamping current  | V <sub>1</sub> < 0 V                               | -50  | -    | mA   |
| VI               | input voltage           | [1]                                                | -0.5 | +4.6 | V    |
| I <sub>OK</sub>  | output clamping current | V <sub>0</sub> < 0 V                               | -50  | -    | mA   |
| Vo               | output voltage          | Active mode and Power-down mode [1]                | -0.5 | +4.6 | V    |
| I <sub>O</sub>   | output current          | $V_{O} = 0 V \text{ to } V_{CC}$                   | -    | ±20  | mA   |
| I <sub>CC</sub>  | supply current          |                                                    | -    | 50   | mA   |
| I <sub>GND</sub> | ground current          |                                                    | -50  | -    | mA   |
| T <sub>stg</sub> | storage temperature     |                                                    | -65  | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40 \text{ °C to } +125 \text{ °C}$ [2] | -    | 250  | mW   |

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT363-2 (TSSOP6) package: P<sub>tot</sub> derates linearly with 3.7 mW/K above 83 °C.

For SOT886 (XSON6) package: P<sub>tot</sub> derates linearly with 3.3 mW/K above 74 °C.

For SOT1115 (XSON6) package:  $\mathsf{P}_{tot}$  derates linearly with 3.2 mW/K above 71 °C.

For SOT1202 (XSON6) package:  $P_{tot}$  derates linearly with 3.3 mW/K above 74  $^\circ\text{C}.$ 

# 9. Recommended operating conditions

#### Table 7. Recommended operating conditions

| Symbol           | Parameter           | Conditions                             | Min | Мах             | Unit |
|------------------|---------------------|----------------------------------------|-----|-----------------|------|
| V <sub>CC</sub>  | supply voltage      |                                        | 2.3 | 3.6             | V    |
| VI               | input voltage       |                                        | 0   | 3.6             | V    |
| Vo               | output voltage      | Active mode                            | 0   | V <sub>CC</sub> | V    |
|                  |                     | Power-down mode; V <sub>CC</sub> = 0 V | 0   | 3.6             | V    |
| T <sub>amb</sub> | ambient temperature |                                        | -40 | +125            | °C   |

# **10. Static characteristics**

#### Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter                                           | Conditions                                                                                         | Min                   | Тур | Мах  | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|-----|------|------|
| T <sub>amb</sub> = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 °C                                                |                                                                                                    |                       |     |      | _    |
| V <sub>T+</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | positive-going threshold                            | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                   | 0.60                  | -   | 1.10 | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | voltage                                             | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                   | 0.75                  | -   | 1.16 | V    |
| V <sub>T-</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | velte ne                                            |                                                                                                    | 0.35                  | -   | 0.60 | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | voltage                                             | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                   | 0.50                  | -   | 0.85 | V    |
| V <sub>H</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hysteresis voltage                                  | $(V_{H} = V_{T+} - V_{T-})$                                                                        |                       |     |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                   | 0.23                  | -   | 0.60 | V    |
| V <sub>T-</sub> r<br>V <sub>H</sub> r<br>V <sub>OH</sub> r<br>V <sub>OL</sub> I<br>I <sub>I</sub> i                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                   | 0.25                  | -   | 0.56 | V    |
| Tamb = 25 °           VT+         Pr           VT-         nr           VH         hr           VOH         H           I         I           IOFF         P           ΔIOFF         a           ICC         SI | HIGH-level output voltage                           | $V_{I} = V_{T+}$ or $V_{T-}$                                                                       |                       |     |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | $I_{O}$ = -20 µA; $V_{CC}$ = 2.3 V to 3.6 V                                                        | V <sub>CC</sub> - 0.1 | -   | -    | V    |
| $\begin{tabular}{ c c c } \hline $\mathbf{T}_{amb}$ = 25 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     | I <sub>O</sub> = -2.3 mA; V <sub>CC</sub> = 2.3 V                                                  | 2.05                  | -   | -    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | I <sub>O</sub> = -3.1 mA; V <sub>CC</sub> = 2.3 V                                                  | 1.9                   | -   | -    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | I <sub>O</sub> = -2.7 mA; V <sub>CC</sub> = 3.0 V                                                  | 2.72                  | -   | -    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | I <sub>O</sub> = -4.0 mA; V <sub>CC</sub> = 3.0 V                                                  | 2.6                   | -   | -    | V    |
| V <sub>OL</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOW-level output voltage $V_I = V_{T+}$ or $V_{T-}$ |                                                                                                    |                       |     |      |      |
| Tamb = 25         VT+       Fv         VT-       rv         VH       h         VOH       h         VOH       h         VOH       L         VOH       L         VOH       L         II       III         IOFF       A         ICC       S         CI       II                                                                                                                                                                                                                                                    |                                                     | $I_{O}$ = 20 µA; $V_{CC}$ = 2.3 V to 3.6 V                                                         | -                     | -   | 0.10 | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | I <sub>O</sub> = 2.3 mA; V <sub>CC</sub> = 2.3 V                                                   | -                     | -   | 0.31 | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | I <sub>O</sub> = 3.1 mA; V <sub>CC</sub> = 2.3 V                                                   | -                     | -   | 0.44 | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | I <sub>O</sub> = 2.7 mA; V <sub>CC</sub> = 3.0 V                                                   | -                     | -   | 0.31 | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | I <sub>O</sub> = 4.0 mA; V <sub>CC</sub> = 3.0 V                                                   | -                     | -   | 0.44 | V    |
| l <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | input leakage current                               | $V_I$ = GND to 3.6 V; $V_{CC}$ = 0 V to 3.6 V                                                      | -                     | -   | ±0.1 | μA   |
| I <sub>OFF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | power-off leakage current                           | $V_{I}$ or $V_{O}$ = 0 V to 3.6 V; $V_{CC}$ = 0 V                                                  | -                     | -   | ±0.1 | μA   |
| ΔI <sub>OFF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | additional power-off<br>leakage current             | $V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$<br>$V_{CC} = 0 \text{ V to } 0.2 \text{ V}$ | -                     | -   | ±0.2 | μA   |
| I <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | supply current                                      | $V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A}; V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$    | -                     | -   | 1.2  | μA   |
| CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | input capacitance                                   | $V_{CC}$ = 0 V to 3.6 V; V <sub>I</sub> = GND or V <sub>CC</sub>                                   | -                     | 0.8 | -    | pF   |
| Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | output capacitance                                  | $V_{O} = GND; V_{CC} = 0 V$                                                                        | -                     | 1.7 | -    | pF   |

**Product data sheet** 

# 74AUP1T58

#### Low-power configurable gate with voltage-level translator

| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Parameter                               | Conditions                                                                                           | Min                   | Тур  | Max                                                                                                                                                                                                                                      | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| T <sub>amb</sub> = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 °C to +85 °C                         | 1                                                                                                    |                       |      |                                                                                                                                                                                                                                          |      |
| V <sub>T+</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | positive-going threshold                | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                     | 0.60                  | -    | 1.10                                                                                                                                                                                                                                     | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | voltage                                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                     | 0.75                  | -    | 1.19                                                                                                                                                                                                                                     | V    |
| V <sub>T-</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | negative-going threshold                | 0.35                                                                                                 | -                     | 0.60 | V                                                                                                                                                                                                                                        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | voltage                                 | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                     | 0.50                  | -    | 0.85                                                                                                                                                                                                                                     | V    |
| V <sub>H</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hysteresis voltage                      | $(V_{H} = V_{T+} - V_{T-})$                                                                          |                       |      |                                                                                                                                                                                                                                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                     | 0.10                  | -    | 0.60                                                                                                                                                                                                                                     | V    |
| V <sub>T+</sub> Fv<br>V <sub>T-</sub> rv<br>V <sub>H</sub> f<br>V <sub>OH</sub> f<br>V <sub>OH</sub> f<br>V <sub>OL</sub> L<br>I <sub>I</sub> iii<br>I <sub>OFF</sub> р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                     | 0.15                  | -    | 0.56                                                                                                                                                                                                                                     | V    |
| Tamb = -40       VT+     P       VT-     n       VH     h       VOH     H       VOH     L       II     ir       IOFF     a       L     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HIGH-level output voltage               | $V_{I} = V_{T+}$ or $V_{T-}$                                                                         |                       |      |                                                                                                                                                                                                                                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | $I_{O}$ = -20 µA; $V_{CC}$ = 2.3 V to 3.6 V                                                          | V <sub>CC</sub> - 0.1 | -    | -                                                                                                                                                                                                                                        | V    |
| VT+         F           VT-         r           VH         r           VOH         r           IL         r           IOFF         r           ICC         r |                                         | I <sub>O</sub> = -2.3 mA; V <sub>CC</sub> = 2.3 V                                                    | 1.97                  | -    | -                                                                                                                                                                                                                                        | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | I <sub>O</sub> = -3.1 mA; V <sub>CC</sub> = 2.3 V                                                    | 1.85                  | -    | -                                                                                                                                                                                                                                        | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | I <sub>O</sub> = -2.7 mA; V <sub>CC</sub> = 3.0 V                                                    | 2.67                  | -    | -                                                                                                                                                                                                                                        | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | I <sub>O</sub> = -4.0 mA; V <sub>CC</sub> = 3.0 V                                                    | 2.55                  | -    | -                                                                                                                                                                                                                                        | V    |
| Tamb = -40           VT+         μ           VT-         μ           VH         μ           VOH         μ           I         Ι           IOFF         μ           IOFF         μ           ICC         μ                                                                                                                                                                            | LOW-level output voltage                | $V_{I} = V_{T+}$ or $V_{T-}$                                                                         |                       |      |                                                                                                                                                                                                                                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | $I_{O}$ = 20 µA; $V_{CC}$ = 2.3 V to 3.6 V                                                           | -                     | -    | 0.1                                                                                                                                                                                                                                      | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | I <sub>O</sub> = 2.3 mA; V <sub>CC</sub> = 2.3 V                                                     | -                     | -    | 0.33                                                                                                                                                                                                                                     | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | I <sub>O</sub> = 3.1 mA; V <sub>CC</sub> = 2.3 V                                                     | -                     | -    | 0.45                                                                                                                                                                                                                                     | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | I <sub>O</sub> = 2.7 mA; V <sub>CC</sub> = 3.0 V                                                     | -                     | -    | 0.33                                                                                                                                                                                                                                     | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | I <sub>O</sub> = 4.0 mA; V <sub>CC</sub> = 3.0 V                                                     | -                     | -    | 1.10         1.19         0.60         0.85         0.60         0.56         -         -         -         -         -         0.1         0.33         0.45         ±0.5         ±0.5         ±0.5         ±0.5         ±1.5         4 | V    |
| l <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | input leakage current                   | $V_I$ = GND to 3.6 V; $V_{CC}$ = 0 V to 3.6 V                                                        | -                     | -    | ±0.5                                                                                                                                                                                                                                     | μA   |
| I <sub>OFF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | power-off leakage current               | $V_{I}$ or $V_{O}$ = 0 V to 3.6 V; $V_{CC}$ = 0 V                                                    | -                     | -    | ±0.5                                                                                                                                                                                                                                     | μA   |
| ΔI <sub>OFF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | additional power-off<br>leakage current | $V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$<br>$V_{CC} = 0 \text{ V to } 0.2 \text{ V}$   | -                     | -    | ±0.5                                                                                                                                                                                                                                     | μA   |
| I <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | supply current                          | $V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$<br>$V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$ | -                     | -    | 1.5                                                                                                                                                                                                                                      | μA   |
| Δl <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | additional supply current               | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}; I_0 = 0 \text{ A}$ [1                                     | 1 -                   | -    | 4                                                                                                                                                                                                                                        | μA   |
| I<br>OFF<br>ΔI <sub>OFF</sub><br>CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } I_{O} = 0 \text{ A}$ [2                                  | ] -                   | -    | 12                                                                                                                                                                                                                                       | μA   |

# 74AUP1T58

#### Low-power configurable gate with voltage-level translator

| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parameter                                                           | Conditions                                                                                           | Min                    | Тур | Max   | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------|-----|-------|------|
| T <sub>amb</sub> = -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40 °C to +125 °C                                                    | 1                                                                                                    |                        |     |       |      |
| V <sub>T+</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | positive-going threshold                                            | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                     | 0.60                   | -   | 1.10  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | voltage                                                             | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                     | 0.75                   | -   | 1.19  | V    |
| V <sub>T</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | negative-going threshold $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ |                                                                                                      | 0.33                   | -   | 0.64  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | voltage                                                             | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                     | 0.46                   | -   | 0.85  | V    |
| V <sub>H</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hysteresis voltage                                                  | $(V_{H} = V_{T+} - V_{T-})$                                                                          |                        |     |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                     | 0.10                   | -   | 0.60  | V    |
| V <sub>OH</sub> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | V <sub>CC</sub> = 3.0 V to 3.6 V                                                                     | 0.15                   | -   | 0.56  | V    |
| V <sub>OH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HIGH-level output voltage                                           | $V_{I} = V_{T+} \text{ or } V_{T-}$                                                                  |                        |     |       |      |
| V <sub>T+</sub> Fv<br>V <sub>T-</sub> rv<br>V <sub>H</sub> f<br>V <sub>OH</sub> f<br>V <sub>OH</sub> f<br>V <sub>OL</sub> L<br>I <sub>I</sub> ii<br>I <sub>OFF</sub> р<br>ΔI <sub>OFF</sub> р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     | $I_{O}$ = -20 µA; $V_{CC}$ = 2.3 V to 3.6 V                                                          | V <sub>CC</sub> - 0.11 | -   | -     | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | I <sub>O</sub> = -2.3 mA; V <sub>CC</sub> = 2.3 V                                                    | 1.77                   | -   | -     | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | I <sub>O</sub> = -3.1 mA; V <sub>CC</sub> = 2.3 V                                                    | 1.67                   | -   | -     | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | I <sub>O</sub> = -2.7 mA; V <sub>CC</sub> = 3.0 V                                                    | 2.40                   | -   | -     | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | I <sub>O</sub> = -4.0 mA; V <sub>CC</sub> = 3.0 V                                                    | 2.30                   | -   | -     | V    |
| VT+         F           VT-         r           VT-         r           VH         r           VOH         r           II         r           IOFF         r           II         r           ICC         r | LOW-level output voltage                                            | $V_{I} = V_{T+} \text{ or } V_{T-}$                                                                  |                        |     |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | $I_0$ = 20 µA; $V_{CC}$ = 2.3 V to 3.6 V                                                             | -                      | -   | 0.11  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | I <sub>O</sub> = 2.3 mA; V <sub>CC</sub> = 2.3 V                                                     | -                      | -   | 0.36  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | I <sub>O</sub> = 3.1 mA; V <sub>CC</sub> = 2.3 V                                                     | -                      | -   | 0.50  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | I <sub>O</sub> = 2.7 mA; V <sub>CC</sub> = 3.0 V                                                     | -                      | -   | 0.36  | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | I <sub>O</sub> = 4.0 mA; V <sub>CC</sub> = 3.0 V                                                     | -                      | -   | 0.50  | V    |
| l <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | input leakage current                                               | $V_{I}$ = GND to 3.6 V; $V_{CC}$ = 0 V to 3.6 V                                                      | -                      | -   | ±0.75 | μA   |
| I <sub>OFF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | power-off leakage current                                           | $V_{I}$ or $V_{O}$ = 0 V to 3.6 V; $V_{CC}$ = 0 V                                                    | -                      | -   | ±0.75 | μA   |
| ΔI <sub>OFF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | additional power-off<br>leakage current                             | $V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$<br>$V_{CC} = 0 \text{ V to } 0.2 \text{ V}$   | -                      | -   | ±0.75 | μA   |
| I <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | supply current                                                      | $V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$<br>$V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$ | -                      | -   | 3.5   | μA   |
| Δl <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | additional supply current                                           | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}; I_{O} = 0 \text{ A}$                                      | 1] -                   | -   | 7     | μA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | $V_{CC}$ = 3.0 V to 3.6 V; I <sub>O</sub> = 0 A                                                      | 2] -                   | -   | 22    | μA   |

[1] [2]

One input at 0.3 V or 1.1 V, other input at  $V_{CC}$  or GND. One input at 0.45 V or 1.2 V, other input at  $V_{CC}$  or GND.

# **11. Dynamic characteristics**

#### Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 10.

| Symbol               | Parameter       | Conditions                          |     | 25 °C   |     | -40 °C to +85 °C |      | -40 °C to +125 °C |      | Unit |
|----------------------|-----------------|-------------------------------------|-----|---------|-----|------------------|------|-------------------|------|------|
|                      |                 |                                     | Min | Typ [1] | Max | Min              | Мах  | Min               | Max  | 1    |
| V <sub>CC</sub> = 2. | 3 V to 2.7 V; V | / <sub>I</sub> = 1.65 V to 1.95 V   |     |         |     | 1                |      |                   | 1    |      |
| t <sub>pd</sub>      |                 | A, B, C to Y; see Fig. 9 [2]        |     |         |     |                  |      |                   |      |      |
| -                    | delay           | C <sub>L</sub> = 5 pF               | 2.1 | 3.6     | 5.6 | 0.5              | 6.8  | 0.5               | 7.5  | ns   |
|                      |                 | C <sub>L</sub> = 10 pF              | 2.6 | 4.1     | 6.2 | 1.0              | 7.9  | 1.0               | 8.7  | ns   |
|                      |                 | C <sub>L</sub> = 15 pF              | 3.0 | 4.6     | 6.8 | 1.0              | 8.7  | 1.0               | 9.6  | ns   |
|                      |                 | C <sub>L</sub> = 30 pF              | 4.0 | 5.8     | 8.1 | 1.5              | 10.8 | 1.5               | 11.9 | ns   |
| V <sub>CC</sub> = 2. | 3 V to 2.7 V; V | V <sub>I</sub> = 2.3 V to 2.7 V     |     | 1       |     |                  |      |                   | 1    |      |
| t <sub>pd</sub>      |                 | A, B, C to Y; see Fig. 9 [2]        |     |         |     |                  |      |                   |      |      |
|                      | delay           | C <sub>L</sub> = 5 pF               | 1.7 | 3.4     | 5.5 | 0.5              | 6.0  | 0.5               | 6.6  | ns   |
|                      |                 | C <sub>L</sub> = 10 pF              | 2.2 | 4.0     | 6.2 | 1.0              | 7.1  | 1.0               | 7.9  | ns   |
|                      |                 | C <sub>L</sub> = 15 pF              | 2.6 | 4.5     | 6.8 | 1.0              | 7.9  | 1.0               | 8.7  | ns   |
|                      |                 | C <sub>L</sub> = 30 pF              | 3.5 | 5.6     | 8.1 | 1.5              | 10.0 | 1.5               | 11.0 | ns   |
| V <sub>CC</sub> = 2. | 3 V to 2.7 V; V | V <sub>I</sub> = 3.0 V to 3.6 V     |     |         |     |                  |      |                   |      |      |
| t <sub>pd</sub>      |                 | A, B, C to Y; see Fig. 9 [2]        |     |         |     |                  |      |                   |      |      |
|                      | delay           | C <sub>L</sub> = 5 pF               | 1.4 | 3.2     | 5.1 | 0.5              | 5.5  | 0.5               | 6.1  | ns   |
|                      |                 | C <sub>L</sub> = 10 pF              | 1.9 | 3.7     | 5.8 | 1.0              | 6.5  | 1.0               | 7.2  | ns   |
|                      |                 | C <sub>L</sub> = 15 pF              | 2.2 | 4.2     | 6.3 | 1.0              | 7.4  | 1.0               | 8.2  | ns   |
|                      |                 | C <sub>L</sub> = 30 pF              | 3.2 | 5.4     | 7.7 | 1.5              | 9.5  | 1.5               | 10.5 | ns   |
| V <sub>CC</sub> = 3. | 0 V to 3.6 V; V | ∕ <sub>I</sub> = 1.65 V to 1.95 V   |     |         |     |                  |      |                   |      |      |
| t <sub>pd</sub>      |                 | A, B, C to Y; see <u>Fig. 9</u> [2] |     |         |     |                  |      |                   |      |      |
|                      | delay           | C <sub>L</sub> = 5 pF               | 2.0 | 2.9     | 4.0 | 0.5              | 8.0  | 0.5               | 8.8  | ns   |
|                      |                 | C <sub>L</sub> = 10 pF              | 2.4 | 3.5     | 4.7 | 1.0              | 8.5  | 1.0               | 9.4  | ns   |
|                      |                 | C <sub>L</sub> = 15 pF              | 2.8 | 3.9     | 5.3 | 1.0              | 9.1  | 1.0               | 10.1 | ns   |
|                      |                 | C <sub>L</sub> = 30 pF              | 3.6 | 5.1     | 6.7 | 1.5              | 9.8  | 1.5               | 10.8 | ns   |
| V <sub>CC</sub> = 3. | 0 V to 3.6 V; V | V <sub>I</sub> = 2.3 V to 2.7 V     |     | ÷       |     |                  |      |                   |      |      |
| t <sub>pd</sub>      |                 | A, B, C to Y; see <u>Fig. 9</u> [2] |     |         |     |                  |      |                   |      |      |
|                      | delay           | C <sub>L</sub> = 5 pF               | 1.6 | 2.8     | 4.4 | 0.5              | 5.3  | 0.5               | 5.9  | ns   |
|                      |                 | C <sub>L</sub> = 10 pF              | 2.1 | 3.4     | 5.1 | 1.0              | 6.1  | 1.0               | 6.8  | ns   |
|                      |                 | C <sub>L</sub> = 15 pF              | 2.4 | 3.9     | 5.6 | 1.0              | 6.8  | 1.0               | 7.5  | ns   |
|                      |                 | C <sub>L</sub> = 30 pF              | 3.4 | 5.0     | 7.0 | 1.5              | 8.5  | 1.5               | 9.4  | ns   |
| V <sub>CC</sub> = 3. | 0 V to 3.6 V; V | V <sub>I</sub> = 3.0 V to 3.6 V     |     |         |     |                  |      |                   |      |      |
| t <sub>pd</sub>      | propagation     | A, B, C to Y; see Fig. 9 [2]        |     |         |     |                  |      |                   |      |      |
|                      | delay           | C <sub>L</sub> = 5 pF               | 1.3 | 2.8     | 4.4 | 0.5              | 4.7  | 0.5               | 5.2  | ns   |
|                      |                 | C <sub>L</sub> = 10 pF              | 1.7 | 3.3     | 5.1 | 1.0              | 5.7  | 1.0               | 6.3  | ns   |
|                      |                 | C <sub>L</sub> = 15 pF              | 2.1 | 3.8     | 5.7 | 1.0              | 6.2  | 1.0               | 6.9  | ns   |
|                      |                 | C <sub>L</sub> = 30 pF              | 3.1 | 4.9     | 7.0 | 1.5              | 7.8  | 1.5               | 8.6  | ns   |

# 74AUP1T58

#### Low-power configurable gate with voltage-level translator

| Symbol                   | Parameter                           | Conditions                                             | 25 °C |         | 25 °C -40 °C to +85 ° |     | o +85 °C | C -40 °C to +125 °C |     | Unit |
|--------------------------|-------------------------------------|--------------------------------------------------------|-------|---------|-----------------------|-----|----------|---------------------|-----|------|
|                          |                                     |                                                        | Min   | Typ [1] | Max                   | Min | Max      | Min                 | Мах | 1    |
| T <sub>amb</sub> = 25 °C |                                     |                                                        |       |         |                       |     |          |                     |     |      |
| C <sub>PD</sub>          | power<br>dissipation<br>capacitance | $f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$ [3] |       |         |                       |     |          |                     |     |      |
|                          |                                     | V <sub>CC</sub> = 2.3 V to 2.7 V                       | -     | 3.6     | -                     | -   | -        | -                   | -   | pF   |
|                          |                                     | V <sub>CC</sub> = 3.0 V to 3.6 V                       | -     | 4.3     | -                     | -   | -        | -                   | -   | pF   |

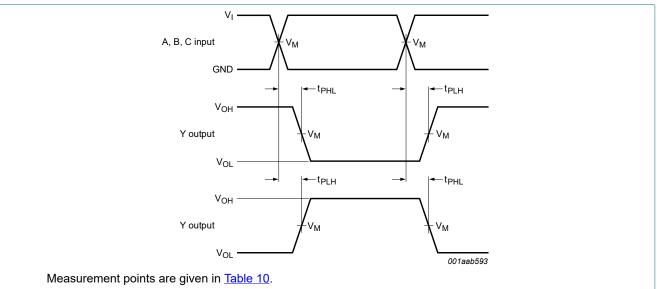
All typical values are measured at nominal V<sub>CC</sub>. [1]

[2] [3]

 $t_{pd}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu$ W).  $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$  where:

 $f_i$  = input frequency in MHz;

 $f_o = output$  frequency in MHz;


 $C_L$  = output load capacitance in pF;

V<sub>CC</sub> = supply voltage in V;

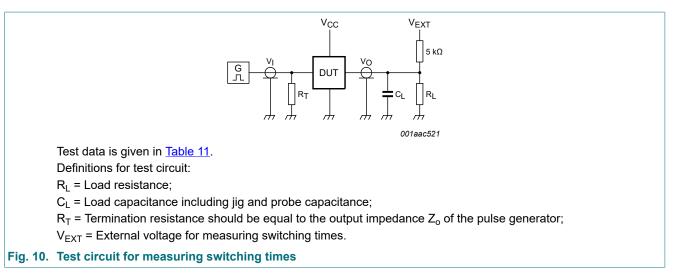
N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$ 

### 11.1. Waveforms and test circuit



 $V_{OL}$  and  $V_{OH}$  are typical output voltage levels that occur with the output load.


#### Input A, B and C to output Y propagation delay times Fig. 9.

#### **Table 10. Measurement points**

| Supply voltage  | Output                | Input                |                 |                                 |
|-----------------|-----------------------|----------------------|-----------------|---------------------------------|
| V <sub>cc</sub> | V <sub>M</sub>        | V <sub>M</sub>       | VI              | t <sub>r</sub> = t <sub>f</sub> |
| 2.3 V to 3.6 V  | 0.5 × V <sub>CC</sub> | 0.5 × V <sub>I</sub> | 1.65 V to 3.6 V | ≤ 3.0 ns                        |

# 74AUP1T58

#### Low-power configurable gate with voltage-level translator



#### Table 11. Test data

| Supply voltage  | Load                         |                    | V <sub>EXT</sub>                    |                                     |                                     |
|-----------------|------------------------------|--------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| V <sub>cc</sub> | CL                           | R <sub>L</sub> [1] | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> |
| 2.3 V to 3.6 V  | 5 pF, 10 pF, 15 pF and 30 pF | 5 kΩ or 1 MΩ       | open                                | GND                                 | $2 \times V_{CC}$                   |

[1] For measuring enable and disable times  $R_L = 5 k\Omega$ .

For measuring propagation delays, setup and hold times and pulse width  $R_L$  = 1  $M\Omega.$ 

# 74AUP1T58

#### Low-power configurable gate with voltage-level translator

# 12. Package outline

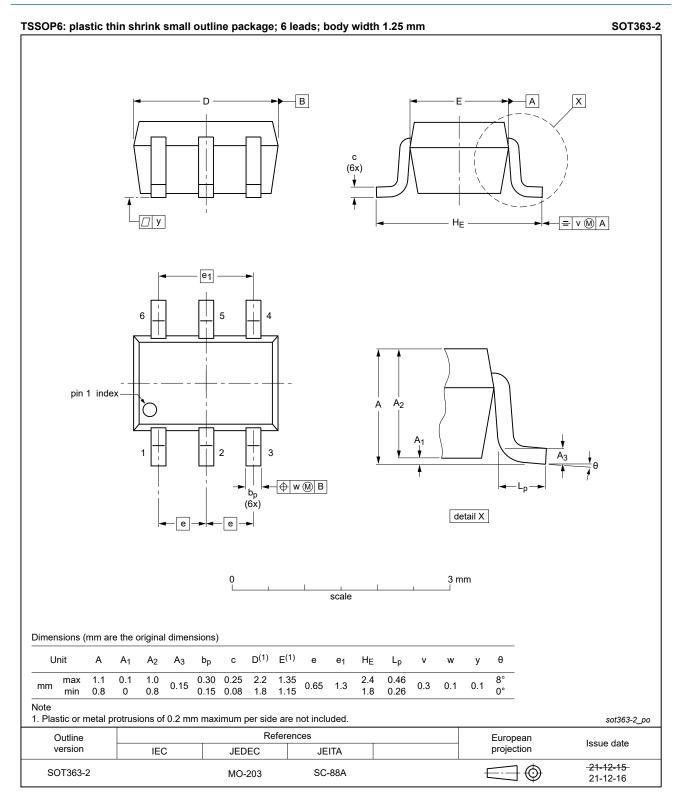



Fig. 11. Package outline SOT363-2 (TSSOP6)

74AUP1T58

# 74AUP1T58

#### Low-power configurable gate with voltage-level translator

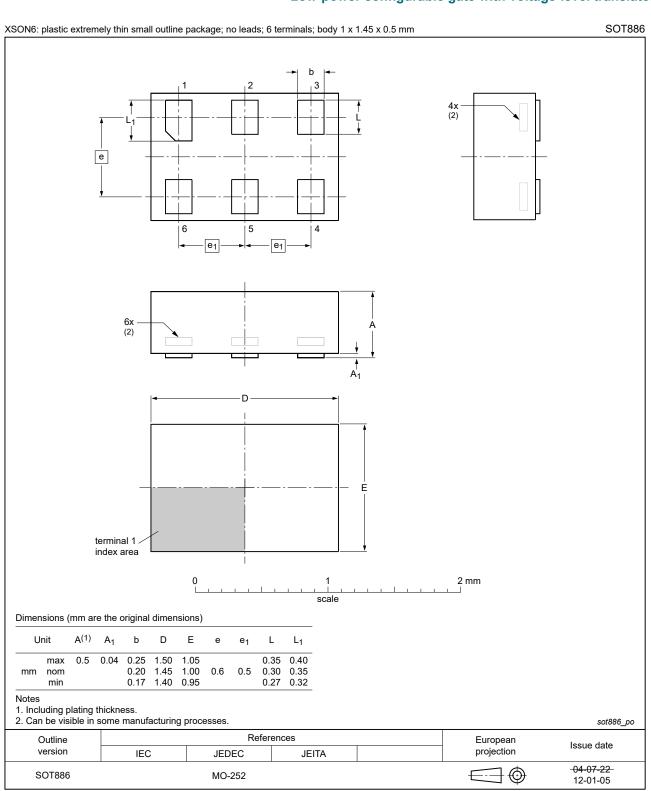
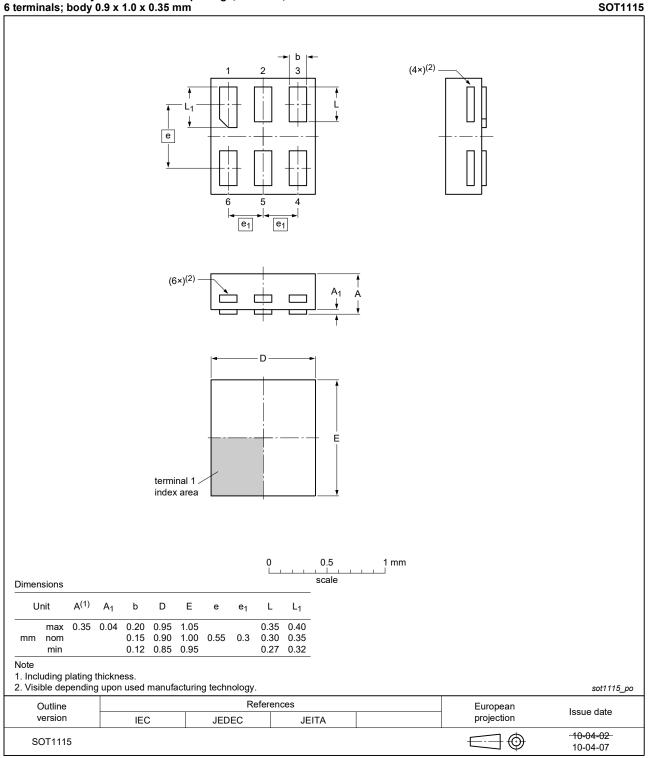




Fig. 12. Package outline SOT886 (XSON6)

# 74AUP1T58

#### Low-power configurable gate with voltage-level translator

XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm





# 74AUP1T58

#### Low-power configurable gate with voltage-level translator

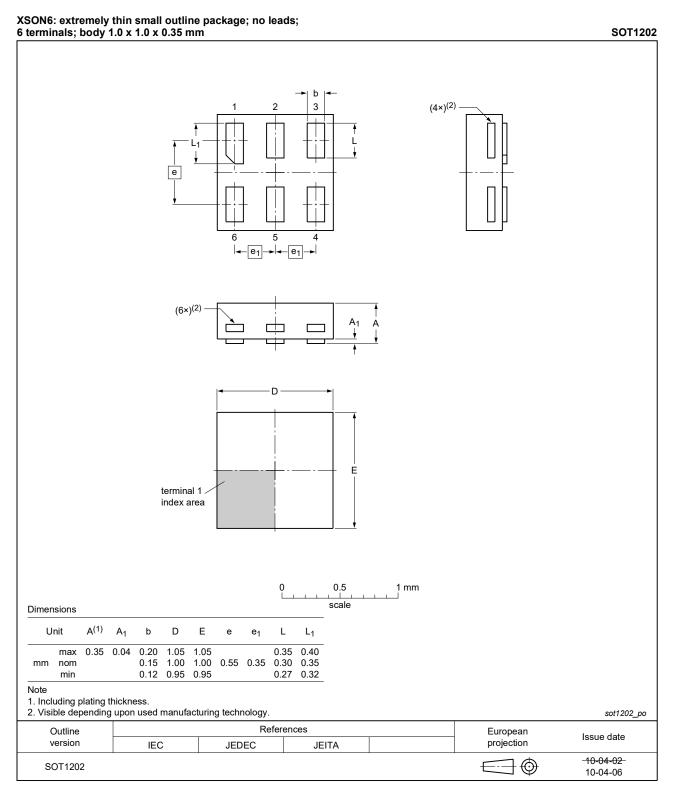



Fig. 14. Package outline SOT1202 (XSON6)

# **13. Abbreviations**

| Acronym | Description                             |
|---------|-----------------------------------------|
| CDM     | Charged Device Model                    |
| CMOS    | Complementary Metal Oxide Semiconductor |
| DUT     | Device Under Test                       |
| ESD     | ElectroStatic Discharge                 |
| НВМ     | Human Body Model                        |

## 14. Revision history

#### Table 13. Revision history

| Document ID    | Release date                                                       | Data sheet status                                                                                                                                                              | Change notice                        | Supersedes                    |  |
|----------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|--|
| 74AUP1T58 v.8  | 20230726                                                           | Product data sheet                                                                                                                                                             | -                                    | 74AUP1T58 v.7                 |  |
| Modifications: | <u>Section 2</u> : I                                               | ESD specification updated                                                                                                                                                      | according to the la                  | atest JEDEC standard.         |  |
| 74AUP1T58 v.7  | 20220126                                                           | Product data sheet                                                                                                                                                             | -                                    | 74AUP1T58 v.6                 |  |
| Modifications: | Package S                                                          | Package SOT363 (SC-88) changed to SOT363-2 (TSSOP6).                                                                                                                           |                                      |                               |  |
| 74AUP1T58 v.6  | 20210602                                                           | Product data sheet                                                                                                                                                             | -                                    | 74AUP1T58 v.5                 |  |
| Modifications: | guidelines<br>• Legal texts<br>• Type numb<br>• <u>Section 1</u> a | of this data sheet has bee<br>of Nexperia.<br>have been adapted to the<br>per 74AUP1T58GF (SOT89<br>and <u>Section 2</u> updated.<br>Derating values for P <sub>tot</sub> tota | new company nar<br>01 / XSON6) remov | ne where appropriate.<br>/ed. |  |
| 74AUP1T58 v.5  | 20120815                                                           | Product data sheet                                                                                                                                                             | -                                    | 74AUP1T58 v.4                 |  |
| Modifications: | Package or                                                         | Package outline drawing of SOT886 ( <u>Fig. 12</u> ) modified.                                                                                                                 |                                      |                               |  |
| 74AUP1T58 v.4  | 20111128                                                           | Product data sheet                                                                                                                                                             | -                                    | 74AUP1T58 v.3                 |  |
| 74AUP1T58 v.3  | 20101018                                                           | Product data sheet                                                                                                                                                             | -                                    | 74AUP1T58 v.2                 |  |
| 74AUP1T58 v.2  | 20090929                                                           | Product data sheet                                                                                                                                                             | -                                    | 74AUP1T58 v.1                 |  |
| 74AUP1T58 v.1  | 20080306                                                           | Product data sheet                                                                                                                                                             | -                                    | -                             |  |

# 15. Legal information

#### Data sheet status

| Document status [1][2]            | Product<br>status [3] | Definition                                                                                  |
|-----------------------------------|-----------------------|---------------------------------------------------------------------------------------------|
| Objective [short]<br>data sheet   | Development           | This document contains data from<br>the objective specification for<br>product development. |
| Preliminary [short]<br>data sheet | Qualification         | This document contains data from the preliminary specification.                             |
| Product [short]<br>data sheet     | Production            | This document contains the product specification.                                           |

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

#### **Definitions**

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### **Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

**Right to make changes** — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### **Trademarks**

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

# 74AUP1T58

#### Low-power configurable gate with voltage-level translator

# Contents

| 1. General description              | 1  |
|-------------------------------------|----|
| 2. Features and benefits            | 1  |
| 3. Ordering information             | 1  |
| 4. Marking                          | 2  |
| 5. Functional diagram               | 2  |
| 6. Pinning information              | 2  |
| 6.1. Pinning                        | 2  |
| 6.2. Pin description                | 2  |
| 7. Functional description           | 3  |
| 7.1. Logic configurations           |    |
| 8. Limiting values                  |    |
| 9. Recommended operating conditions | 4  |
| 10. Static characteristics          | 5  |
| 11. Dynamic characteristics         | 8  |
| 11.1. Waveforms and test circuit    |    |
| 12. Package outline                 | 11 |
| 13. Abbreviations                   | 15 |
| 14. Revision history                | 15 |
| 15. Legal information               | 16 |

© Nexperia B.V. 2023. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 26 July 2023

74AUP1T58



# **OUR CERTIFICATE**

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

| DCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NOS1 NA A                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUALITY MANAGEMENT SYSTEM<br>CERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ENVIRONMENTAL MANAGEMENT SYSTEM<br>CERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OCCUPATIONAL HEALTH & SAFETY<br>MANAGEMENT SYSTEM CERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 心可生存证明者<br>CERTIFICATE OF INCORPORATION                                                                                                                                                                                                                                                                                                                                             |
| DIGI ELECTRONICS HK LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DIGI ELECTRONICS HK LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DIGI ELECTRONICS HK LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A B B - +<br>I have by small y that                                                                                                                                                                                                                                                                                                                                                 |
| RATINGS 355, 10 KING COMPETING AND A REAL AND STREET, MONGHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FLATERALIS 397, HO HONG COMPRESSION AMOUNT A MUCH STREET, MONGRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FLATERALIS 267, NO HANG CONDITION OF THE 2 HERA VIEW STREET, INCHORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DELLE ACTIONCY INC. AMTES<br>均衡電子指導作符合可                                                                                                                                                                                                                                                                                                                                             |
| GB/T 19001-2016 ktt ISO9001:2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GB/T 24001-2016 idt ISO14001:2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RUMANDO 2011 IO NOU COMMENSI DI NA VILLA STREET, MONIO<br>R. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0 \rightarrow 0$ if if $0 \rightarrow 0$ is $0 \rightarrow 0$ if $1 \ge 0 \le 0 \Rightarrow 0 \Rightarrow 0$<br>is DNs day becomestical in Kang Kang under the Comparison Delivarian<br>$A \rightarrow 0 \Rightarrow A \rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$<br>(Effective E2) of the Laws of Hears Rough, and Hear Bits Compary is |
| Radies of electronic components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Select of dimension comparety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Refer of elements compares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1944)44 BE of the Laws of Hang Bong, and Ball Bas company is<br>${\mathbb T}$ .<br>${\mathbb R}$ ,<br>${\mathbb T}$ .<br>The Ball company,                                                                                                                                                                                                                                         |
| tantanaturate<br>anter monoste tana<br>meter meter mete | tartina Name<br>Part in the cost of the sector | bethallheim<br>antariana beat can<br>Natural and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 # 4 # # ± 0 − Λ + − Λ ± + ± + ± ± +<br>NetWO 06 32 James 200.                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Levelen And Face Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | €2445014.01.0-61164,8,468,80<br>Mo.Au.1.1.02050<br>Parglandar at Campanian<br>Mang Space Associationstrate August                                                                                                                                                                                                                                                                   |
| Control of the second sec                                                                                                                     | For the second s   | Control trace is a first of the second | In Hop:<br>이 진 실 4년 3 근 카이트 토가에 · 프 + A. 비행 / 1 위 S · 진 3 · A. M. N · N · D · O. 위 · H. A. A. N<br>R · A. H. A. H. H. H. S. Company, New All Per Companies Registry, then initiative any table intellights<br>in any other tablecluid property rights interquent all the company, serve are any partitioned.                                                                        |





Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.