

74AUP3G14GSX Datasheet

www.digi-electronics.com

DiGi Electronics Part Number Manufacturer Manufacturer Product Number Description

Detailed Description

74AUP3G14GSX-DG

NXP USA Inc.

74AUP3G14GSX

IC INVERT SCHMITT 3CH 3INP 8XSON

Inverter IC 3 Channel Schmitt Trigger 8-XSON (1.35 x1)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74AUP3G14GSX	NXP USA Inc.
Series:	Product Status:
74AUP	Active
Logic Type:	Number of Circuits:
Inverter	3
Number of Inputs:	Features:
3	Schmitt Trigger
Voltage - Supply:	Current - Quiescent (Max):
0.8V ~ 3.6V	500 nA
Current - Output High, Low:	Input Logic Level - Low:
4mA, 4mA	0.1V ~ 0.88V
Input Logic Level - High:	Max Propagation Delay @ V, Max CL:
0.6V ~ 2.29V	6.1ns @ 3.3V, 30pF
Operating Temperature:	Mounting Type:
-40°C ~ 125°C (TA)	Surface Mount
Supplier Device Package:	Package / Case:
8-XSON (1.35x1)	8-XFDFN
Base Product Number:	
74AUP3G14	

Environmental & Export classification

ECCN:	
FAR99	

HTSUS:

8542.39.0001

Low-power triple Schmitt trigger inverter Rev. 4 — 31 July 2023

Product data sheet

1. General description

The 74AUP3G14 provides three inverting buffers with Schmitt trigger action which accept standard input signals. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the input hysteresis voltage V_{H-} .

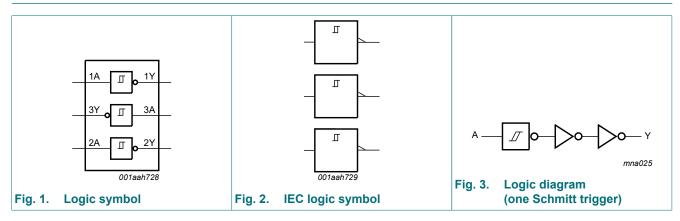
2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Low static power consumption; I_{CC} = 0.9 µA (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 3A exceeds 5000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Applications

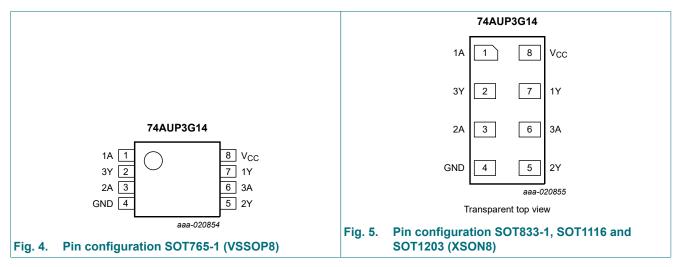
Wave and pulse shaper Astable multivibrator Monostable multivibrator

4. Ordering information


Type number	Package	Package							
	Temperature range	Name	Description	Version					
74AUP3G14DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	<u>SOT765-1</u>					
74AUP3G14GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 × 1.95 × 0.5 mm	<u>SOT833-1</u>					
<u>74AUP3G14GN</u>	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 × 1.0 × 0.35 mm	<u>SOT1116</u>					
74AUP3G14GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 × 1.0 × 0.35 mm	<u>SOT1203</u>					

5. Marking

Table 2. Marking				
Type number	Marking code [1]			
74AUP3G14DC	рК			
74AUP3G14GT	рК			
74AUP3G14GN	рК			
74AUP3G14GS	рК			


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

6. Functional diagram

7. Pinning information

7.2. Pin description

Table 3. Pin description

Symbol	Pin	Description
1A, 2A, 3A	1, 3, 6	data input
1Y, 2Y, 3Y	7, 5, 2	data output
GND	4	ground (0 V)
V _{CC}	8	supply voltage

8. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level.

Input	Output
nA	nY
L	Н
Н	L

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V ₀ < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode [1]	-0.5	+4.6	V
I _O	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = -40 °C to +125 °C [2]	-	250	mW

The input and output voltage ratings may be exceeded if the input and output current ratings are observed. [1]

For SOT765-1 (VSSOP8) package: Ptot derates linearly with 4.9 mW/K above 99 °C. [2] For SOT833-1 (XSON8) package: Ptot derates linearly with 3.1 mW/K above 68 °C.

For SOT1116 (XSON8) package: Ptot derates linearly with 4.2 mW/K above 90 °C.

For SOT1203 (XSON8) package: Ptot derates linearly with 3.6 mW/K above 81 °C.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C

11. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C				1	
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
V _{OL} L		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	2.05	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I_0 = -2.7 mA; V_{CC} = 3.0 V	2.72	-	-	V
		I_0 = -4.0 mA; V_{CC} = 3.0 V	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_0 = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.31	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.44	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.31	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.44	V
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μA
I _{OFF}	power-off leakage current	$V_{I} \text{ or } V_{O} = 0 \text{ V to } 3.6 \text{ V; } V_{CC} = 0 \text{ V}$	-	-	±0.2	μA
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.2	μA
I _{CC}	supply current	V_1 = GND or V_{CC} ; I_0 = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	0.5	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	40	μA
CI	input capacitance	V_{I} = GND or V_{CC} ; V_{CC} = 0 V to 3.6 V	-	1.1	-	pF
Co	output capacitance	$V_0 = GND; V_{CC} = 0 V$	-	1.7	-	pF

74AUP3G14

Low-power triple Schmitt trigger inverter

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	40 °C to +85 °C		-	<u> </u>		1
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
Voh		I _O = -1.1 mA; V _{CC} = 1.1 V	0.7 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.03	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.97	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.85	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.67	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.55	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.33	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.33	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.45	V
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.5	μA
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.6	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	2.67 - 2.55 - .6 V .6 V .10 .10 - .10		0.9	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	50	μA

74AUP3G14

Low-power triple Schmitt trigger inverter

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = -	40 °C to +125 °C				1	
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	$0.6 \times V_{CC}$	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	0.93	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.77	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.67	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.40	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.33 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.36	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.36	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.75	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μA
ΔI _{OFF}	additional power-off leakage current	$V_{I} \text{ or } V_{O} = 0 \text{ V to } 3.6 \text{ V;}$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.75	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A}; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	75	μA

12. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 7.

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
				Typ [1]	Max	Min	Мах	Min	Max	
C _L = 5 p	F									
t _{pd}	propagation	nA to nY; see Fig. 6 [2]							
	delay	V _{CC} = 0.8 V	-	19.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.7	5.9	11.0	2.4	11.1	2.4	11.2	ns
		V _{CC} = 1.4 V to 1.6 V	2.6	4.3	6.6	2.4	7.1	2.4	7.4	ns
		V _{CC} = 1.65 V to 1.95 V	2.1	3.7	5.4	2.0	6.0	2.0	6.2	ns
		V _{CC} = 2.3 V to 2.7 V	2.0	3.0	4.1	1.7	4.5	1.7	4.7	ns
		V _{CC} = 3.0 V to 3.6 V	1.9	2.8	3.6	1.5	3.9	1.5	4.0	ns
C _L = 10	pF		-							
t _{pd}	propagation	nA to nY; see Fig. 6 [2]							
	delay	V _{CC} = 0.8 V	-	23.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.9	6.8	12.7	2.8	12.8	2.8	12.9	ns
		V _{CC} = 1.4 V to 1.6 V	2.8	5.0	7.7	2.6	8.2	2.6	8.6	ns
		V _{CC} = 1.65 V to 1.95 V	2.7	4.2	6.2	2.5	6.7	2.5	7.1	ns
		V _{CC} = 2.3 V to 2.7 V	2.3	3.6	4.8	2.1	5.2	2.1	5.5	ns
		V _{CC} = 3.0 V to 3.6 V	2.1	3.3	4.3	2.0	4.5	2.0	4.7	ns
C _L = 15	pF									
t _{pd}	propagation	nA to nY; see Fig. 6 [2								
	delay	V _{CC} = 0.8 V	-	26.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.3	7.6	14.3	3.0	14.5	3.0	14.7	ns
		V _{CC} = 1.4 V to 1.6 V	3.3	5.5	8.6	2.9	9.4	2.9	9.8	ns
		V _{CC} = 1.65 V to 1.95 V	2.8	4.7	7.0	2.8	7.7	2.8	8.1	ns
		V _{CC} = 2.3 V to 2.7 V	2.7	4.0	5.5	2.4	5.9	2.4	6.2	ns
		V _{CC} = 3.0 V to 3.6 V	2.6	3.8	4.8	2.2	5.2	2.2	5.4	ns
C _L = 30	pF							1		
t _{pd}	propagation	nA to nY; see Fig. 6 [2								
	delay	V _{CC} = 0.8 V	-	37.3	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.0	9.8	18.7	3.9	19.6	3.9	20.0	ns
		V _{CC} = 1.4 V to 1.6 V	3.7	7.1	11.2	3.8	12.3	3.8	12.9	ns
		V _{CC} = 1.65 V to 1.95 V	3.6	6.0	9.1	3.6	10.0	3.6	10.6	ns
		V _{CC} = 2.3 V to 2.7 V	3.5	5.2	6.9	3.2	7.5	3.2	7.9	ns
		V _{CC} = 3.0 V to 3.6 V	3.3	4.8	6.1	3.1	7.1	3.1	7.4	ns

74AUP3G14

Low-power triple Schmitt trigger inverter

Symbol	Parameter	er Conditions			25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
				Min	Typ [1]	Мах	Min	Max	Min	Max	
C _L = 5 p	F, 10 pF, 15 pF	and 30 pF									
C _{PD}	power dissipation	$f_i = 1 \text{ MHz};$ V _I = GND to V _{CC}	[3] [4]								
	capacitance	V _{CC} = 0.8 V		-	2.6	-	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V		-	2.7	-	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V		-	2.9	-	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V		-	3.1	-	-	-	-	-	pF
		V _{CC} = 2.3 V to 2.7 V		-	3.7	-	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V		-	4.3	-	-	-	-	-	pF

All typical values are measured at nominal V_{CC}. [1]

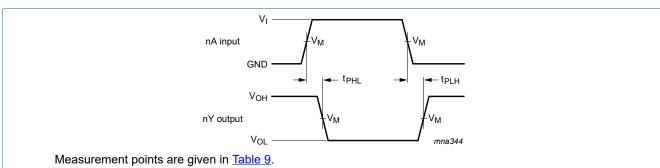
[2]

 t_{pd} is the same as t_{PLH} and t_{PHL} . All specified values are the average typical values over all stated loads. [3]

[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

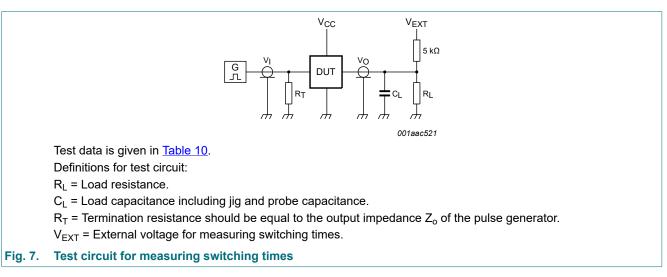

C_L = load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching; $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

Low-power triple Schmitt trigger inverter

12.1. Waveforms and test circuit



Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 6. The data input (nA) to output (nY) propagation delays

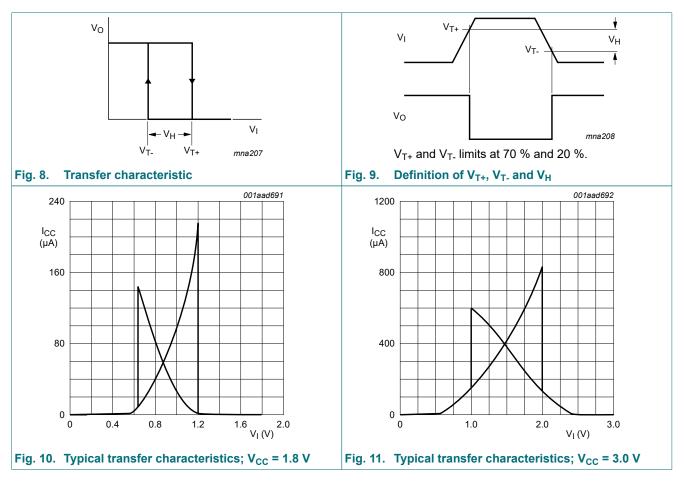
Table 9. Measurement points

Supply voltage	Output	Input		
V _{cc}	V _M	V _M	VI	$t_r = t_f$
0.8 V to 3.6 V	0.5 × V _{CC}	0.5 × V _{CC}	V _{CC}	≤ 3.0 ns

Table 10. Test data

Supply voltage	Load		V _{EXT}			
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	$2 \times V_{CC}$	

[1] For measuring enable and disable times $R_L = 5 k\Omega$.


For measuring propagation delays, set-up and hold times and pulse width R_L = 1 M Ω .

13. Transfer characteristics

Table 11. Transfer characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8.

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{T+}	positive-going	see <u>Fig. 8</u> and <u>Fig. 9</u>								
	threshold voltage	V _{CC} = 0.8 V	0.30	-	0.60	0.30	0.60	0.30	0.62	V
		V _{CC} = 1.1 V	0.53	-	0.90	0.53	0.90	0.53	0.92	V
		V _{CC} = 1.4 V	0.74	-	1.11	0.74	1.11	0.74	1.13	V
		V _{CC} = 1.65 V	0.91	-	1.29	0.91	1.29	0.91	1.31	V
		V _{CC} = 2.3 V	1.37	-	1.77	1.37	1.77	1.37	1.80	V
		V _{CC} = 3.0 V	1.88	-	2.29	1.88	2.29	1.88	2.32	V
V _{T-}	negative-going	see <u>Fig. 8</u> and <u>Fig. 9</u>								
	threshold voltage	V _{CC} = 0.8 V	0.10	-	0.60	0.10	0.60	0.10	0.60	V
		V _{CC} = 1.1 V	0.26	-	0.65	0.26	0.65	0.26	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	0.39	0.75	0.39	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	0.47	0.84	0.47	0.84	V
		V _{CC} = 2.3 V	0.69	-	1.04	0.69	1.04	0.69	1.04	V
		V _{CC} = 3.0 V	0.88	-	1.24	0.88	1.24	0.88	1.24	V
V _H	hysteresis voltage	(V _{T+} - V _{T-}); see <u>Fig. 8, Fig. 9,</u> <u>Fig. 10</u> and <u>Fig. 11</u>								
		V _{CC} = 0.8 V	0.07	-	0.50	0.07	0.50	0.07	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	0.08	0.46	0.08	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	0.18	0.56	0.18	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	0.27	0.66	0.27	0.66	V
		V _{CC} = 2.3 V	0.53	-	0.92	0.53	0.92	0.53	0.92	V
		V _{CC} = 3.0 V	0.79	-	1.31	0.79	1.31	0.79	1.31	V

13.1. Waveforms transfer characteristics

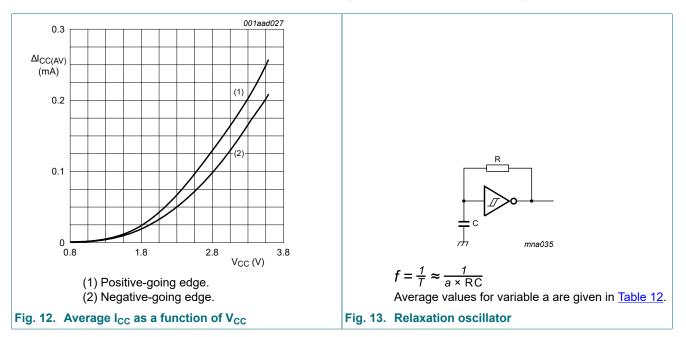
14. Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC} \text{ where:}$

 P_{add} = additional power dissipation (μ W);

 f_i = input frequency (MHz);


 t_r = rise time (ns); 10 % to 90 %;

 t_f = fall time (ns); 90 % to 10 %;

 $\Delta I_{CC(AV)}$ = average additional supply current (µA).

Average $\Delta I_{CC(AV)}$ differs with positive or negative input transitions, as shown in Fig. 12.

An example of a relaxation circuit using the 74AUP3G14 is shown in Fig. 13.

Table 12. Variable values

Supply voltage	Variable a
1.1 V	1.28
1.5 V	1.22
1.8 V	1.24
2.8 V	1.34
3.3 V	1.45

Low-power triple Schmitt trigger inverter

15. Package outline

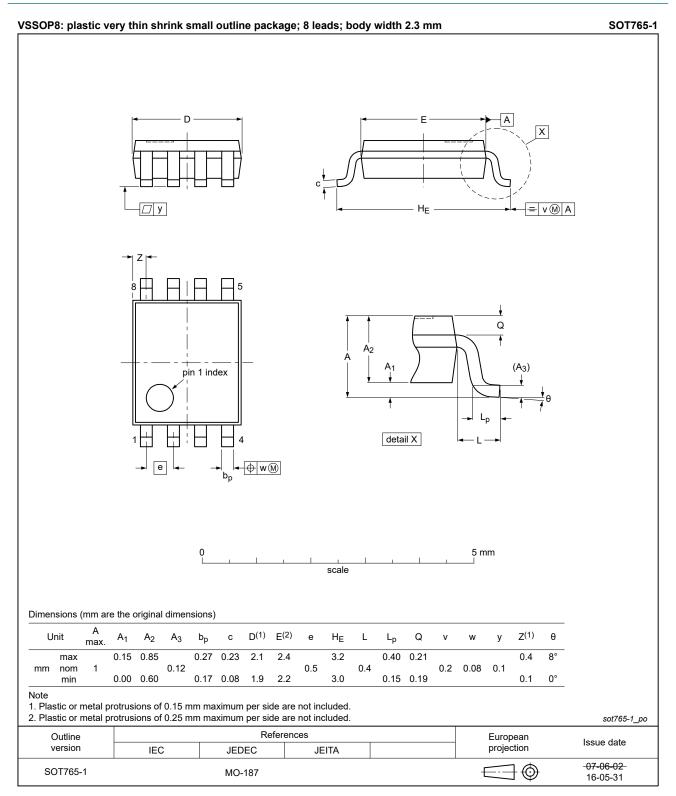
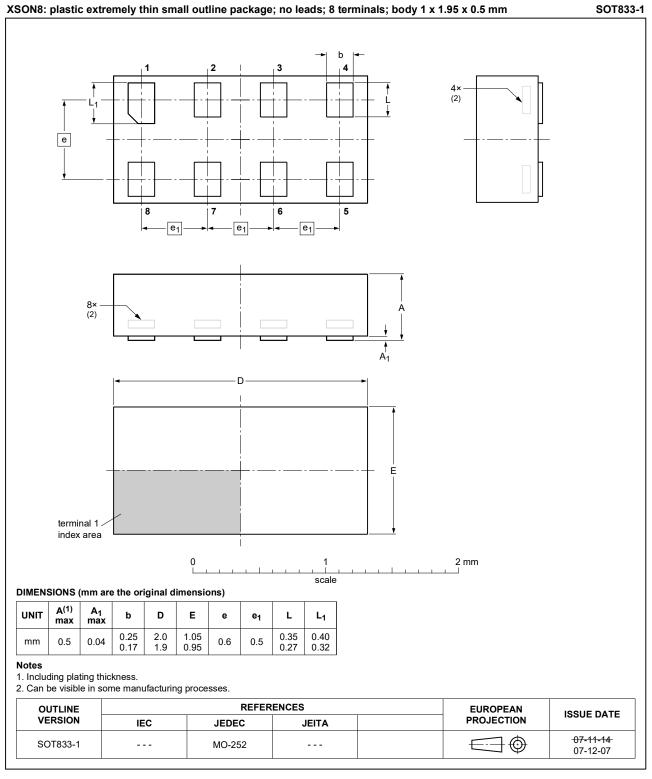



Fig. 14. Package outline SOT765-1 (VSSOP8)

74AUP3G14

Low-power triple Schmitt trigger inverter

74AUP3G14

Low-power triple Schmitt trigger inverter

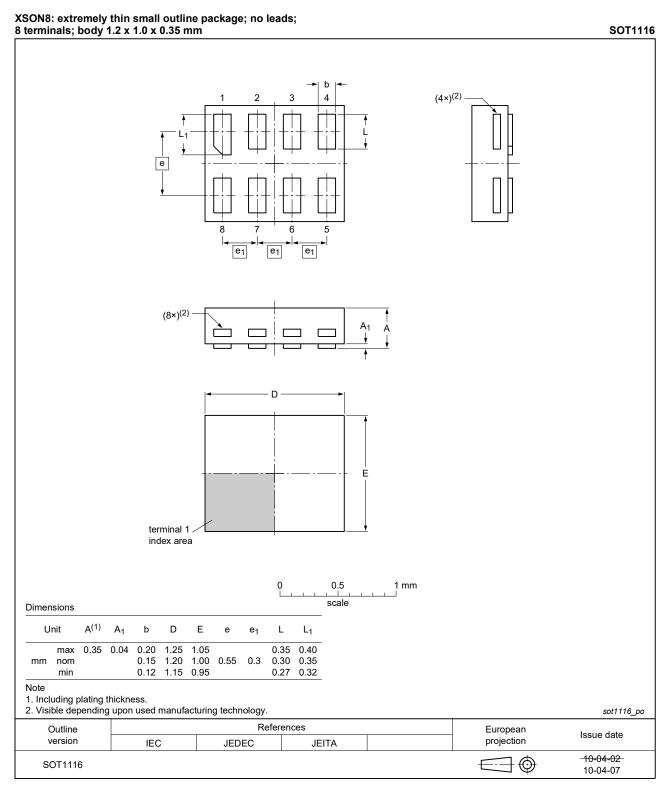
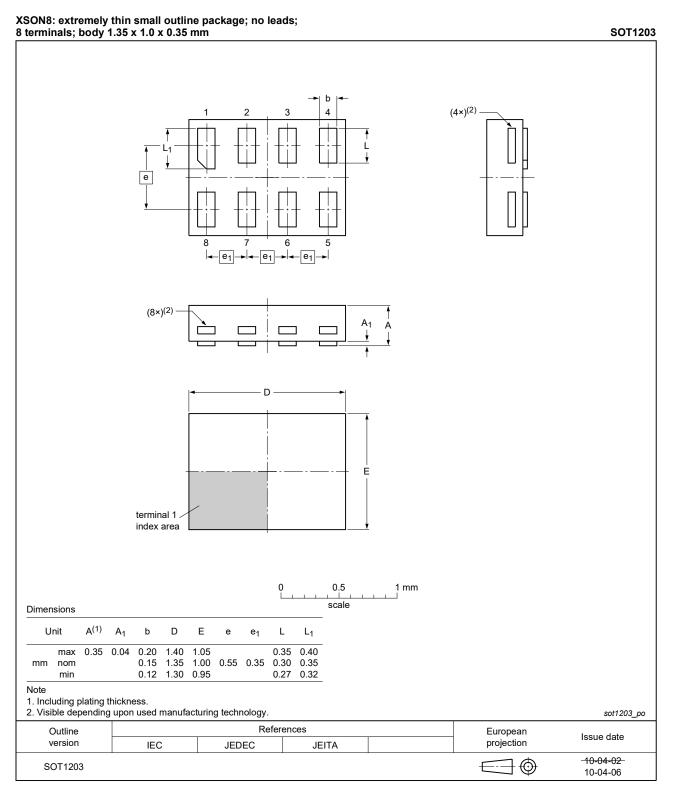



Fig. 16. Package outline SOT1116 (XSON8)

74AUP3G14

Low-power triple Schmitt trigger inverter

16. Abbreviations

Table 13. Abbreviations				
Acronym	Description			
CDM	Charged Device Model			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
НВМ	Human Body Model			

17. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP3G14 v.4	20230731	Product data sheet	-	74AUP3G14 v.3
Modifications:	Section 2:	ESD specification updated	according to the la	atest JEDEC standard.
74AUP3G14 v.3	20210208	Product data sheet	-	74AUP3G14 v.2
Modifications:	guidelines	t of this data sheet has beer of Nexperia.	n redesigned to co	omply with the identity
	Type numl	s have been adapted to the per 74AUP3G14GM (SOT90 erating values for P _{tot} total p	02-2 / XQFN8) rer	noved.
74AUP3G14 v.2	Type numl	per 74AUP3G14GM (SOT90	02-2 / XQFN8) rer	noved.
74AUP3G14 v.2 Modifications:	Type numl <u>Table 5</u> : D 20161006	per 74AUP3G14GM (SOT90 erating values for P _{tot} total p	02-2 / XQFN8) rer bower dissipation (-	noved. updated. 74AUP3G14 v.1

Low-power triple Schmitt trigger inverter

18. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contents

1.	General description	.1
2.	Features and benefits	. 1
3.	Applications	. 1
4.	Ordering information	.2
5.	Marking	. 2
6.	Functional diagram	2
7.	Pinning information	.3
7.1	. Pinning	.3
7.2	. Pin description	. 3
8.	Functional description	. 3
9.	Limiting values	4
10.	Recommended operating conditions	.4
	Recommended operating conditions Static characteristics	
11.		.5
11. 12.	Static characteristics	.5 8
11. 12. 12.	Static characteristics Dynamic characteristics	.5 8 10
11. 12 . 12. 13 .	Static characteristics Dynamic characteristics 1. Waveforms and test circuit	.5 8 10 11
11. 12. 12. 13. 13.	Static characteristics Dynamic characteristics 1. Waveforms and test circuit Transfer characteristics	.5 8 10 11
11. 12. 12. 13. 13.	Static characteristics	.5 .8 10 11 12
 11. 12. 13. 13. 14. 	Static characteristics	.5 8 10 11 12 13
 11. 12. 13. 13. 14. 15. 16. 	Static characteristics	.5 8 10 11 12 13 14
 11. 12. 13. 13. 14. 15. 16. 17. 	Static characteristics	.5 10 11 12 13 14 18

© Nexperia B.V. 2023. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 31 July 2023

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

DCI	DCL	DCL	NA NOS1 NA A
QUALITY MANAGEMENT SYSTEM CERTIFICATE	ENVIRONMENTAL MANAGEMENT SYSTEM CERTIFICATE	OCCUPATIONAL HEALTH & SAFETY MANAGEMENT SYSTEM CERTIFICATE	心可生存证明者 CERTIFICATE OF INCORPORATION
DIGI ELECTRONICS HK LIMITED	DIGI ELECTRONICS HK LIMITED	DIGI ELECTRONICS HK LIMITED	A B B - + I have by small y that
RATINGS 355, 10 KING COMPETING AND A REAL AND STREET, MONGHD	FLATERALIS 397, HO HONG COMPRESSION AMOUNT A MUCH STREET, MONGRO	FLATERALIS 267, NO HANG CONVERTING AND THE 2 HERA VIEW STREET, INCHORE	DELLE ACTIONCY INC. AMTES 均衡電子指導作符合可
GB/T 19001-2016 ktt ISO9001:2015	GB/T 24001-2016 idt ISO14001:2015	RUMANDO 2011 IO NOD COMPARING CONTRA 5 16 Y VAN STREET, MONINO R. S.	$0 \rightarrow 0$ if if $0 \rightarrow 0$ is $0 \rightarrow 0$ if $1 \ge 0 \le 0 \Rightarrow 0 \Rightarrow 0$ is DNs day becomestical in Kang Kang under the Comparison Delivarian $A \rightarrow 0 \Rightarrow A \rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$ (Effective E2) of the Laws of Hears Rough, and Hear Bits Compary is
Radies of electronic components	Select of dimension compared	Refer of elements compares	(1944)44 BE of the Laws of Hang Bong, and Ball Bas company is ${\mathbb T}$. ${\mathbb R}$, ${\mathbb T}$. The Ball company,
tantanaturate anter monoste tana meter meter mete	tartina Name Participation (New Strendspring A an AD	bethallheim antariana beat can NUSH-604-13 Marchille	5 # 4 # # ± 0 − Λ + − Λ ± + ± + ± ± + NetWO 06 32 James 200.
	Levelen And Face Level		€2445014.01.0-61164,8,468,80 Mo.Au.1.1.02050 Parglandar at Campanian Mang Space Associationstrate August
Control of the second sec	For the second s	Control trace is a first of the second	In Hop: 이 진 실 4년 3 근 카이트 토가에 · 프 + A. 비행 / 1 위 · 의 · 의 · A. 비행 / 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이 · 이

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.