

74HC93N,112 Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number 74HC93N,112-DG

Manufacturer NXP USA Inc.

Manufacturer Product Number 74HC93N,112

Description IC BINARY COUNTER 4-BIT 14DIP

Detailed Description Counter IC Binary Counter 1 Element 4 Bit Negative

Edge 14-DIP

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74HC93N,112	NXP USA Inc.
Series:	Product Status:
74HC	Obsolete
Logic Type:	Direction:
Binary Counter	Up
Number of Elements:	Number of Bits per Element:
1	4
Reset:	Timing:
Asynchronous	
Count Rate:	Trigger Type:
108 MHz	Negative Edge
Voltage - Supply:	Operating Temperature:
2 V ~ 6 V	-40°C ~ 125°C
Mounting Type:	Package / Case:
Through Hole	14-DIP (0.300", 7.62mm)
Supplier Device Package:	Base Product Number:
14-DIP	74HC93

Environmental & Export classification

8542.39.0001

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT934-bit binary ripple counter

Product specification
File under Integrated Circuits, IC06

December 1990

4-bit binary ripple counter

74HC/HCT93

FEATURES

- · Various counting modes
- Asynchronous master reset
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT93 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT93 are 4-bit binary ripple counters. The devices consist of four master-slave flip-flops internally connected to provide a

divide-by-two section and a divide-by-eight section. Each section has a separate clock input (\overline{CP}_0 and \overline{CP}_1) to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q_n outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

A gated AND asynchronous master reset (MR₁ and MR₂) is provided which overrides both clocks and resets (clears) all flip-flops.

Since the output from the divide-by-two section is not internally connected to the succeeding stages,

the device may be operated in various counting modes. In a 4-bit ripple counter the output Q_0 must be connected externally to input \overline{CP}_1 . The input count pulses are applied to clock input \overline{CP}_0 . Simultaneous frequency divisions of 2, 4, 8 and 16 are performed at the Q_0 , Q_1 , Q_2 and Q_3 outputs as shown in the function table. As a 3-bit ripple counter the input count pulses are applied to input \overline{CP}_0 .

Simultaneous frequency divisions of 2, 4 and 8 are available at the Q_1 , Q_2 and Q_3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	UNII	
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0	C 15 pF: V 5 V	12	15	ns	
f _{max}	maximum clock frequency	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	100	77	MHz	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	22	22	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

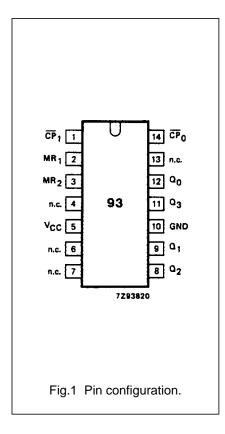
f_i = input frequency in MHz; f_o = output frequency in MHz

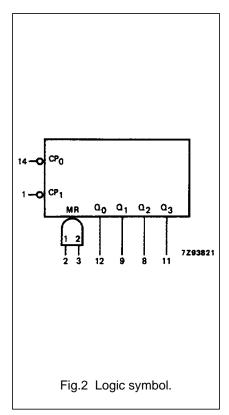
$$\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$$

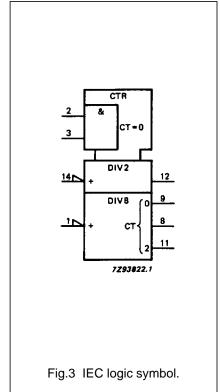
C_L = output load capacitance in pF; V_{CC} = supply voltage in V

2. For HC the condition is $V_1 = GND$ to V_{CC} ; for HCT the condition is $V_1 = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

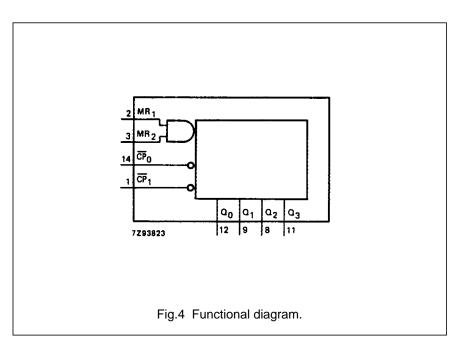

See "74HC/HCT/HCU/HCMOS Logic Package Information".

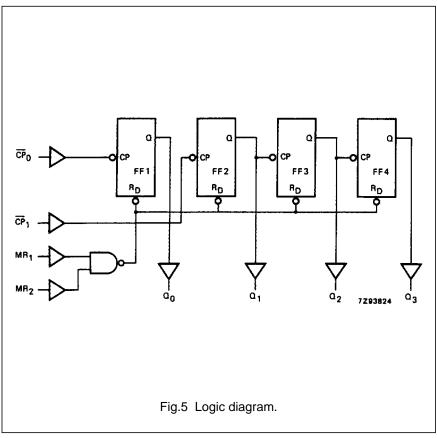

4-bit binary ripple counter


74HC/HCT93

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	CP₁	clock input 2 nd , 3 rd and 4 th section (HIGH-to-LOW, edge-triggered)
2, 3	MR ₁ , MR ₂	asynchronous master reset (active HIGH)
4, 6, 7, 13	n.c.	not connected
5	V _{CC}	positive supply voltage
10	GND	ground (0 V)
12, 9, 8, 11	Q ₀ to Q ₃	flip-flop outputs
14	CP₀	clock input 1st section (HIGH-to-LOW, edge-triggered)





4-bit binary ripple counter

74HC/HCT93

FUNCTION TABLE

COUNT		OUTPUTS							
COUNT	Q ₀	Q ₁	Q ₂	Q ₃					
0 1 2 3	L H L H	L L H	L L L	L L L					
4 5 6 7	L H L H	L H H	H H H	L L L					
8 9 10 11	L H L	L H H	L L L	H H H					
12 13 14 15	L H L	L L H	H H H	H H H					

Notes

Output Q₀ connected to \(\overline{CP}_1\).
 H = HIGH voltage level
 L = LOW voltage level

MODE SELECTION

	SET	OUTPUTS						
MR ₁	MR ₂	Q_0	Q ₂	Q_3				
Н	Н	L	L	L	L			
L	Н	count						
H	L	count						
L	L		COU	ınt				

4-bit binary ripple counter

74HC/HCT93

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TES	TEST CONDITIONS	
CVMDOL	DADAMETED	74HC										
SYMBOL	PARAMETER	+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS		
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay \overline{CP}_0 to Q_0		41 15 12	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay CP ₁ to Q ₁		49 16 13	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay $\overline{\text{CP}}_1$ to \mathbb{Q}_2		61 22 18	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.6	
t _{PHL} / t _{PLH}	propagation delay $\overline{\text{CP}}_1$ to Q_3		80 29 23	245 49 42		305 61 52		370 71 63	ns	2.0 4.5 6.0	Fig.6	
t _{PHL}	propagation delay MR _n to Q _n		50 18 14	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.7	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	
t _{rem}	removal time MR _n to \overline{CP}_0 , \overline{CP}_1	50 10 9	8 3 2		65 13 11		75 15 13		ns	2.0 4.5 6.0	Fig.7	
t _W	pulse width \overline{CP}_0 , \overline{CP}_1	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _W	master reset pulse width MR _n	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7	
f _{max}	maximum clock pulse frequency CP ₀ , CP ₁	6.0 30 35	30 91 108		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.6	

4-bit binary ripple counter

74HC/HCT93

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

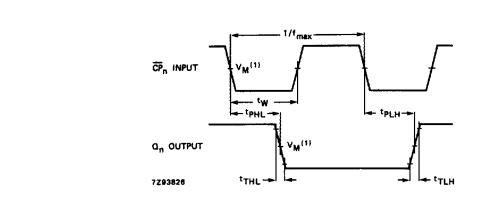
I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

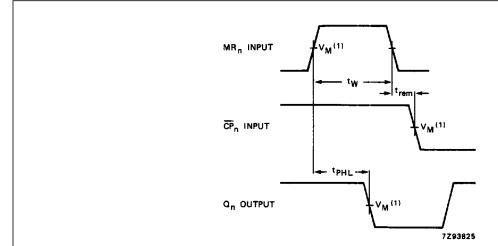
INPUT	UNIT LOAD COEFFICIENT
\overline{CP}_0 , \overline{CP}_1	0.60
MR _n	0.40

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C) 74HCT								TES	T CONDITIONS
CYMPOL	DAD 414575D										
SYMBOL	PARAMETER	+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(' '	
t _{PHL} / t _{PLH}	propagation delay CP ₀ to Q ₀		18	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay CP ₁ to Q ₁		18	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay CP ₁ to Q ₂		24	46		58		69	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay CP ₁ to Q ₃		30	58		73		87	ns	4.5	Fig.6
t _{PHL}	propagation delay MR _n to Q _n		17	33		41		50	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _{rem}	removal time MR _n to $\overline{\text{CP}}_0$, $\overline{\text{CP}}_1$	10	3		13		15		ns	4.5	Fig.7
t _W	pulse width \overline{CP}_0 , \overline{CP}_1	16	7		20		24		ns	4.5	Fig.6
t _W	master reset pulse width MR _n	16	5		20		24		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency \overline{CP}_0 , \overline{CP}_1	30	70		24		20		MHz	4.5	Fig.6

4-bit binary ripple counter


74HC/HCT93

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the clock (\overline{CP}_n) to output (Q_n) propagation delays, the clock pulse width, output transition times and the maximum clock pulse frequency.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the master reset (MR_n) pulse width, the master reset to output (Q_n) propagation delays and the master reset to clock (\overline{CP}_n) removal time.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com