

PA4343.222NLT Datasheet

www.digi-electronics.com

\4343.222NLT-DG
Ilse Electronics
A4343.222NLT
XED IND 2.2UH 22A 4.2 MOHM SMD
2 µH Shielded Molded Inductor 22 A 4.2mOhm M K Nonstandard

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
PA4343.222NLT	Pulse Electronics
Series:	Product Status:
PA4343.XXXNLT	Active
Туре:	Material - Core:
Molded	-
Inductance:	Tolerance:
2.2 μH	±20%
Current Rating (Amps):	Current - Saturation (Isat):
22 A	37A
Shielding:	DC Resistance (DCR):
Shielded	4.2mOhm Max
Q @ Freq:	Frequency - Self Resonant:
Ratings:	Operating Temperature:
AEC-Q200	-40°C ~ 125°C
Inductance Frequency - Test:	Features:
100 kHz	
Mounting Type:	Package / Case:
Surface Mount	Nonstandard
Supplier Device Package:	Size / Dimension:
-	0.551" L x 0.504" W (14.00mm x 12.80mm)
Height - Seated (Max):	
0.256" (6.50mm)	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8504.50.4000	

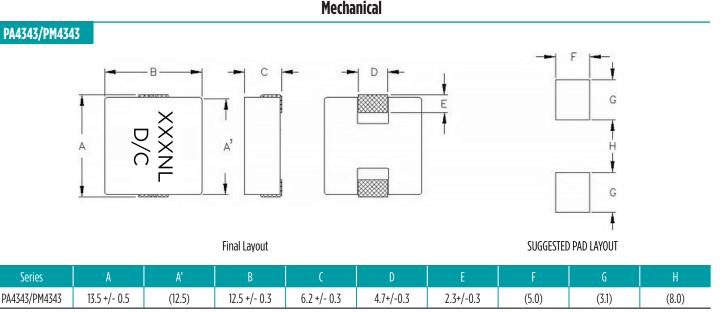
High Current Molded Power Inductor - PA4343.XXXNLT & PM4343.XXXNLT Series

- *Height:* 6.5mm Max
- *Footprint:* 14.0mm x 12.8mm Max
- *Current Rating:* up to 55.0A
- *Inductance Range:* 0.15*u*H to 47.0*u*H
- *[®]* Shielded construction and compact design
- *It is a the set of th*
- *©* Minimized acoustic noise and minimized leakage flux
- ② 200Vdc Isolation between terminal and core

		Electrical	Specifications @ 25°C -	Operating Temperature	-55°C to +125°C		
Commercial ^{6,7} Automotive ^{6,7}		Ø Inductance⁵	Rated ³	DC Resistance		Saturation ² Current	
	100KHz, 1V	Current	TYP.	MAX.	K Factor for CoreLoss		
		uH±20%	A	mΩ	mΩ	A	
PA4343.151NLT	PM4343.151NLT	0.15*	55	0.49	0.6	118	-
PA4343.221NLT	PM4343.221NLT	0.22	53	0.47	0.6	112	71.3
PA4343.301NLT	PM4343.301NLT	0.3	48	0.6	0.72	72	-
PA4343.331NLT	PM4343.331NLT	0.33	46	0.65	0.8	68	96.2
PA4343.361NLT	PM4343.361NLT	0.36	45	0.7	0.9	66	_
PA4343.401NLT	PM4343.401NLT	0.4	44	0.7	1	64	_
PA4343.451NLT	PM4343.451NLT	0.45	42	0.9	1.2	63	_
PA4343.471NLT	PM4343.471NLT	0.47	41	0.9	1.2	63	60.4
PA4343.501NLT	PM4343.501NLT	0.5	40	0.92	1.25	60	_
PA4343.561NLT	PM4343.561NLT	0.56	37	1.05	1.2	58	84.0
PA4343.681NLT	PM4343.681NLT	0.68	35	1.25	1.5	55	75.8
PA4343.821NLT	PM4343.821NLT	0.82	33	1.5	1.9	50	58.9
PA4343.102NLT	PM4343.102NLT	1	30	1.7	2.3	48	53.5
PA4343.142NLT	PM4343.142NLT	1.4	27	2.1	2.6	46	-
PA4343.152NLT	PM4343.152NLT	1.5	27	2.5	3	45	38.1
PA4343.182NLT	PM4343.182NLT	1.8	27	3.6	4	40	37.7
PA4343.222NLT	PM4343.222NLT	2.2	22	3.8	4.2	37	33.5
PA4343.272NLT	PM4343.272NLT	2.7	20	4.3	5.5	32	28.3
PA4343.332NLT	PM4343.332NLT	3.3	18	5.7	6.8	30	18.7
PA4343.472NLT	PM4343.472NLT	4.7	13.5	7	8.4	28	16.5
PA4343.562NLT	PM4343.562NLT	5.6	12.5	8.5	10	23	13.9
PA4343.682NLT	PM4343.682NLT	6.8	11.5	9.5	11.5	18	12.9
PA4343.822NLT	PM4343.822NLT	8.2	10.5	12	15.5	15.5	10.3

1

High Current Molded Power Inductor - PA4343.XXXNLT & PM4343.XXXNLT Series

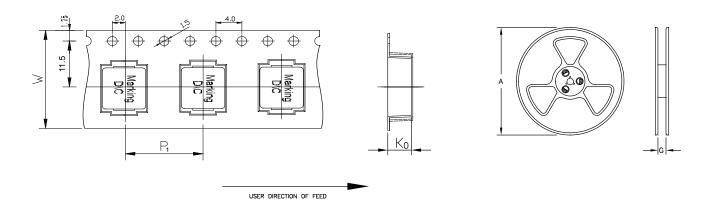

		Electrical	Specifications @ 25°C -	Operating Temperature	-55°C to +125°C		
		Ø Inductance⁵	1V Current	DC Resistance		Saturation ²	
Commercial ^{6,7}	Automotive ^{6,7}	100KHz, 1V		TYP.	MAX.	Current	K Factor for CoreLoss
		uH±20%	A	mΩ	mΩ	A	
PA4343.103NLT	PM4343.103NLT	10	10	13.2	16.5	15.5	9.6
PA4343.133NLT	PM4343.133NLT	13	9	21	24	13	7.3
PA4343.153NLT	PM4343.153NLT	15	9	23.2	28	12.5	11.0
PA4343.223NLT	PM4343.223NLT	22	9	32.5	37	12	7.5
PA4343.333NLT	PM4343.333NLT	33	8	48	58	11	6.2
PA4343.473NLT	PM4343.473NLT	47	6.5	76	90	9.5	4.2

Notes:

- 1. Actual temperature of the component during system operation (ambient plus temperature rise) must be within the standard operating range.
- The saturation current is the current at which the initial inductance drops approximately 30% at the stated ambient temperature. This current is determined by placing the compnent in the specified ambient environment and applying a short duration pulse current (to eliminate self-heating effect) to the component.
- 3. The rated current is the DC current required to raise the component temperature by approximately 40°C. Take note that the components' performanc varies depending on the system condition. It is suggested that the component be tested at the system level, to verify the temperature rise of the component during system operation.
- 4. The part temperature (ambient+temp rise) should not exceed 125°C under worst case operating conditions. Circuit design, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be

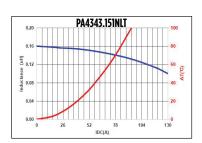
verified in the end application.

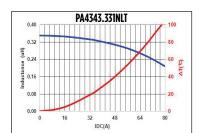
- 5. Please note that the inductance tolerance of all parts are +/-20% except those indicated with a * which are +/-30%.
- 6. Parts shown in bold are standard catalog parts and are available through sample stock and distribution. Parts in lighter font are available but are not necessarily held in sample stock or distribution and lead times may be longer. Please contact Pulse for availablity.
- The PM part numbers have full automotive IATF16949 certification. The PM part number dimensions are 100% tested in production but do not necessarily meet a product capability index (Cpk)> 1.33 and therefore may not strictly conform to PPAP.
 Searcial (have doriging Content of the search of the sear
- 8. Special Characteristics \heartsuit

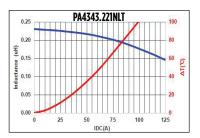

All Dimensions in mm.

2

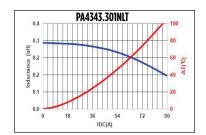
High Current Molded Power Inductor - PA4343.XXXNLT & PM4343.XXXNLT Series

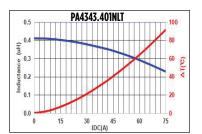

TAPE & REEL INFO

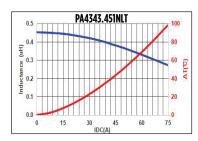


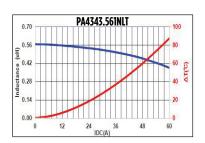

SURFACE MOUNTING TYPE, REEL/TAPE LIST						
	REEL SIZE (mm) TAPE SIZE (mm)			QTY		
	A	G	P ₁	W	K ₀	PCS/REEL
PA4343/PM4343	Ø330	24	16	24	7.0	500

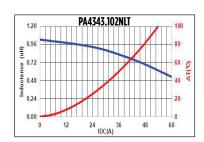
Typical Performance Curves

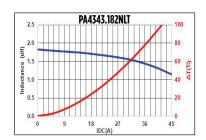

PA4343.XXXNLT and PM4343.XXXNLT

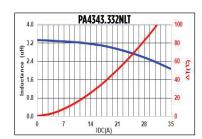


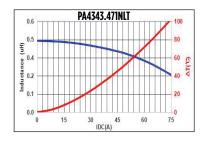


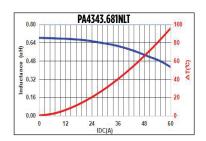


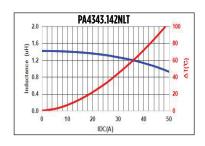


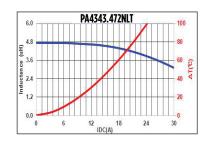

High Current Molded Power Inductor - PA4343.XXXNLT & PM4343.XXXNLT Series

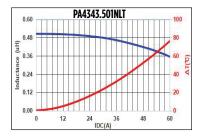


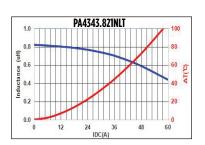


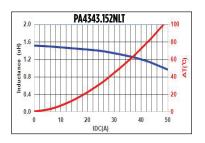


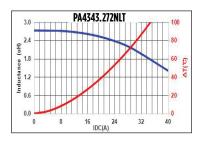


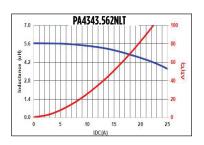


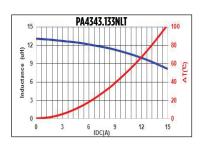


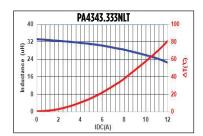


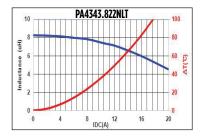


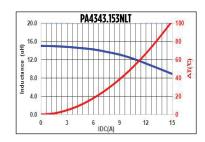


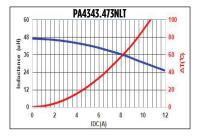


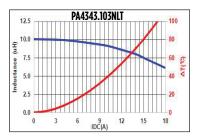


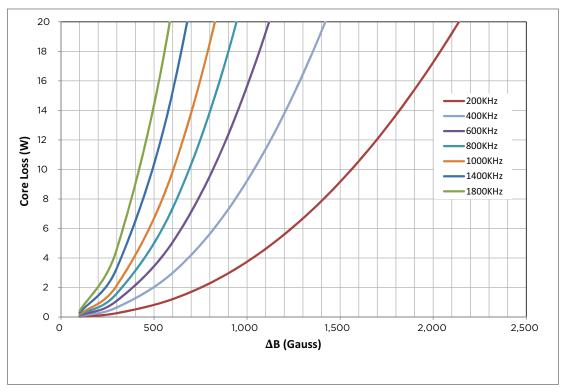



High Current Molded Power Inductor - PA4343.XXXNLT & PM4343.XXXNLT Series









5

P770.N (07/23)

High Current Molded Power Inductor - PA4343.XXXNLT & PM4343.XXXNLT Series

CoreLoss versus Flux Density

 ΔB (Gauss) = K *L(uH) * $\Delta I(A)$

For More Information:

Americas - prodinfo_power_americas@yageo.com | Europe - prodinfo_power_emea@yageo.com | Asia - prodinfo_power_asia@yageo.com

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2023. Pulse Electronics, Inc. All rights reserved.

YAGEO Corporation and its affiliates do not recommend the use of commercial, automotive, and/or COTS grade products for high reliability applications or manned space flight.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.