

PG0083.232NLT Datasheet

DiGi Electronics Part Number	PG0083.232NLT-DG
Manufacturor	Pulsa Electronics
Manufacturer	Pulse Electronics
Manufacturer Product Number	PG0083.232NLT
Description	FIXED IND 2.3UH 7A 18 MOHM SMD
Detailed Description	2.3 μH Unshielded Wirewound Inductor 7 A 18mOh m Max Nonstandard

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
PG0083.232NLT	Pulse Electronics
Series:	Product Status:
PG0083	Active
Туре:	Material - Core:
Wirewound	•
Inductance:	Tolerance:
2.3 µH	±25%
Current Rating (Amps):	Current - Saturation (Isat):
7 A	11.5A
Shielding:	DC Resistance (DCR):
Unshielded	18mOhm Max
Q @ Freq:	Frequency - Self Resonant:
Ratings:	Operating Temperature:
-	-40°C ~ 95°C
Inductance Frequency - Test:	Features:
100 kHz	
Mounting Type:	Package / Case:
Surface Mount	Nonstandard
Supplier Device Package:	Size / Dimension:
-	0.268" L x 0.268" W (6.80mm x 6.80mm)
Height - Seated (Max):	
0.157" (4.00mm)	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):	
ROHS3 Compliant	1 (Unlimited)	
REACH Status:	ECCN:	
REACH Unaffected	EAR99	
HTSUS:		
8504.50.4000		

SMT Power Inductors

Power Coils - PG0083 Series

- 🕐 Height: 4.2mm Max
- *P* Footprint: 6.8mm x 6.8mm Max
- *Current Rating: up to 17.5A*
- 🕐 Inductance Range: 0.32µН to 3.76µН

Electrical Specifications @ 25°C - Operating Temperature -40°C to +95°C1									
Part ⁸	Inductance @ Irated ²	Irated ³	D (m	(R Ω)	Inductance Saturation ⁴ @0 Abc Current	Heating ⁵ Current IDC	Core Loss ⁶ Factor		
Nulliper	(µ H ТҮР)	(A)	(TYP)	(MAX)	(μH±25%)	Isat (A)	(A)	(K1)	(K2)
PG0083.401	0.32	17.5	3.0	3.2	0.4	27	17.5	2.25E-10	85.4
PG0083.601	0.48	15.0	4.5	4.8	0.6	21	15	2.25E-10	99.7
PG0083.102	0.8	12.0	6.6	7.2	1	17	12	2.25E-10	135.9
PG0083.182	1.44	8.0	15.6	16.0	1.8	13	8	2.25E-10	179.4
PG0083.232	1.84	7.0	17.5	18.0	2.3	11.5	7.5	2.25E-10	202.2
PG0083.332	2.64	5.5	26.6	27.5	3.3	9.5	5.8	2.25E-10	234.9
PG0083.472	3.76	4.5	36.6	38.0	4.7	8	4.5	2.25E-10	281.1

Notes:

- 1. The temperature of the component (ambient plus temperature rise) must be within the specified operating temperature range.
- 2. Inductance at Irated is a typical inductance value for the component taken at rated current.
- 3. The rated current listed is the lower of the saturation current @ 25°C or the heating current.
- 4. The saturation current, lsat, is the current at which the component inductance drops by 20% (typical) at an ambient temperature of 25°C. This current is determined by placing the component in the specified ambient environment and applying a short duration pulse current (to eliminate self-heating effects) to the component.
- 5. The heating current, IDC, is the DC current required to raise the component temperature by approximately 40°C. The heating current is determined by mounting the component on a typical PCB and applying current for 30 minutes. The temperature is measured by placing the thermocouple on top of the unit under test. Take note that the component's performance varies depending on the system condition. It is

suggested that the component be tested at the system level, to verify thetemperature rise of the component during system operation.

- 6. Core loss approximation is based on published core data:
 - Core Loss = $K1 * (f)^{1.035} * (K2\Delta I)^{2.26}$ Where: Core Loss = in Watts f = switching frequency in kHz
 - K1 & K2 = core loss factors
 - ΔI = delta I across the component in Ampere
 - $K2\Delta I$ = one half of the peak to peak flux density across the component in Gauss
 - Unless otherwise specified, all testing is made at 100kHz, 0.1VAC.
- Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number (i.e. PG0083.472 becomesPG0083.472T). Pulse complies to industry standard tape and reel specification EIA481

	Mechanical	Schemati	ic
PG0083		1	
.268 6,80 MAX → 268 6,80 MAX → 268 Countru of Origin		20	
		Part No.	"Max. Height "X" (in. /MM)
	\rightarrow $ \langle -2x \frac{.091 \pm .005}{2.30 \pm 0.12} \rangle$	PG0083.401	.165/4,20
	$\xrightarrow{-472}_{12,00}$ 150 + 005 Weight	PG0083.601	.165/4,20
	→ · • · • • • • • • • • • • • • • • • •	PG0083.102	.165/4,20
<u>.630 ± .012</u> 16,00 ± 0,30	$\left \begin{array}{c} -\frac{.299 \pm .005}{7.60 \pm 0.12} \end{array} \right \qquad \text{"Y"-in./mm}$	PG0083.182	.157/4,00
	SUGGESTED PAD LAYOUT Dimensions: Inches	PG0083.232	.157/4,00
→ Y ← .280	- Unless otherwise specified,	PG0083.332	.157/4,00
TAPE & REEL	LAYOUT all tolerances are: $\pm \frac{1}{0,25}$	PG0083.472	.157/4,00
1	power.pulseelectronics.com SPM2006_32 (05/19) http://www.pow	/er.pulseelectro	nics.com/contact

7.

SMT Power Inductors Power Coils - PG0083 Series

Inductance vs. Current Characteristics

For More Information					
Pulse Worldwide Headquarters 15255 Innovation Drive Ste 100 San Diego, CA 92128 U.S.A.	Pulse Europe Pulse Electronics GmbH Am Rottland 12 58540 Meinerzhagen Germany	Pulse China Headquarters Pulse Electronics (ShenZhen) CO., LTD D708, Shenzhen Academy of Aerospace Technology, The 10th Keji South Road, Nanshan District, Shenzhen, P.R. China 518057	Pulse North China Room 2704/2705 Super Ocean Finance Ctr. 2067 Yan An Road West Shanghai 200336 China	Pulse South Asia 3 Fraser Street 0428 DUO Tower Singapore 189352	Pulse North Asia 1F., No.111 Xiyuan Road Zhongli District Taoyuan City 32057 Taiwan (R.O.C)
Tel: 858 674 8100 Fax: 858 674 8262	Tel: 49 2354 777 100 Fax: 49 2354 777 168	Tel: 86 755 33966678 Fax: 86 755 33966700	Tel: 86 21 62787060 Fax: 86 2162786973	Tel: 65 6287 8998 Fax: 65 6280 0080	Tel: 886 3 4356768 Fax: 886 3 4356820

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electronics, Inc. All rights reserved.

2

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

<section-header></section-header>		
Herein Harris Harris Harris Harris	Handbard Barran and Angel	A SA B CONTRACTOR OF A SA CONTRA

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.