

PG0087.152NLT Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	PG0087.152NLT-DG
Manufacturer	Pulse Electronics
Manufacturer Product Number	PG0087.152NLT
Description	FIXED IND 1.5UH 3A 34 MOHM SMD
Detailed Description	1.5 μH Shielded Inductor 3 A 34mOhm Max Nonsta ndard

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
PG0087.152NLT	Pulse Electronics
Series:	Product Status:
PG0087NL	Active
Туре:	Material - Core:
-	•
Inductance:	Tolerance:
1.5 µН	±20%
Current Rating (Amps):	Current - Saturation (Isat):
3 A	3A
Shielding:	DC Resistance (DCR):
Shielded	34mOhm Max
Q @ Freq:	Frequency - Self Resonant:
	40MHz
Ratings:	Operating Temperature:
-	-40°C ~ 130°C
Inductance Frequency - Test:	Features:
100 kHz	
Mounting Type:	Package / Case:
Surface Mount	Nonstandard
Supplier Device Package:	Size / Dimension:
-	0.244" L x 0.244" W (6.20mm x 6.20mm)
Height - Seated (Max):	
0.079" (2.00mm)	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8504.50.4000	

SMT Power Inductors

Shielded Drum Core - PG0087NL Series

- e Height: 2.0mm Max
- Footprint: 6.2mm x 6.2mm Max
- Current Rating: up to 3.5A
- Inductance Range: 0.9μH to 4.5mH

	Electrical Specifications @ 25°C - Operating Temperature -40°C to +130°C ¹								
	Inductance	nductance Inductance DCR (m Ω) Saturation ⁶ Heating ⁷ Core Loss ⁸							
Part ^{2, 3} Number	@ 0ADC (μH ±20%)	@ Irated (μΗ TYP)	Irated ⁵ (A)	ТҮР	MAX	Current -10% (A)	Current IDC +40°C (A)	Factor (K2)	SRF (MHz)
PG0087.102NL	1.0	0.9	3.5	29	33	3.5	5.5	710	>40
PG0087.152NL	1.5	1.3	3.0	23	34	3.0	4.9	870	>40
PG0087.222NL	2.2	1.9	2.2	40	45	2.2	4.2	1100	>40
PG0087.332NL	3.3	2.9	2.0	47	55	2.0	3.3	1200	>40
PG0087.472NL	4.7	4.2	1.75	64	70	1.75	2.8	1600	>40
PG0087.682NL	6.8	6.1	1.50	97	105	1.50	2.4	1700	37
PG0087.103NL	10	9.0	1.20	111	124	1.20	2.2	2200	34
PG0087.153NL	15	13	0.94	198	205	0.94	1.6	2700	28
PG0087.223NL	22	19	0.80	248	280	0.80	1.5	3400	22
PG0087.333NL	33	29	0.65	342	386	0.65	1.2	4000	17
PG0087.473NL	47	42	0.54	525	594	0.54	0.95	4900	15
PG0087.683NL	68	61	0.43	656	710	0.43	0.80	6100	13
PG0087.104NL	100	90	0.36	1180	1200	0.36	0.65	7000	10
PG0087.154NL	150	130	0.30	1740	1850	0.30	0.52	8200	9.0
PG0087.224NL	220	190	0.25	2600	2700	0.25	0.42	10000	7.0
PG0087.334NL	330	290	0.20	3810	3950	0.20	0.36	13000	5.4
PG0087.474NL	470	420	0.15	6147	6240	0.15	0.28	15000	4.3
PG0087.604NL	600	540	0.13	6716	7160	0.13	0.26	17000	4.1
PG0087.684NL	680	610	0.10	8947	9190	0.10	0.22	18000	3.9
PG0087.824NL	820	730	0.08	10800	11440	0.08	0.20	19000	3.5
PG0087.105NL	1000	900	0.06	11655	12570	0.06	0.18	21000	2.7
PG0087.205NL	2000	1800	0.05	23200	24900	0.05	0.14	30000	1.9
PG0087.305NL	3000	2700	0.038	30660	31530	0.038	0.12	37000	1.6

SMT Power Inductors

Shielded Drum Core - PG0087NL Series

NOTE :

- 1. Unless otherwise specified, all testing is made at 100kHz, 0.1VAC.
- Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number (i.e PG0087.102NL becomes PG0087.102NLT).
 Pulse complies with industry standard Tape and Tape & Reel specification EIA481.
- 3. The "NL" suffix indicates an RoHS-compliant part numer. Non-NL suffixed parts are not necessarily RoHS compliant, but are electrically and mechanically equivalent to NL versions. If a part number does not have the "NL" version, but an RoHS compliant version is required, please contact Pulse for availability.
- 4. Temperature of the component (ambient plus temperature rise) must be within specified operating temperature range.
- 5. The rated current (Irated) as listed is either the saturation current or the heating current depending on which value is lower.
- 6. The saturation current, lsat, is the current at which the component inductance drops by the indicated percentage (typical) at an ambient temperature of 25C. This current is determined by placing the component in the specified ambient environment and applying a short duration pulse current (to eliminate self-heating effects) to the component.
- 7. The heating current, ldc, is the DC current required to raise the component temperature by the indicated delta (approximately). The heating current is determined by mounting the component on a typical PCB and applying current for 30 minutes. The temperature is measured by placing the thermocouple on top of the unit under test.

8. In high volt*time (Et) or ripple current applications, additional heating in the component can occur due to core losses in the inductor which may necessitate derating the current in order to limit the temperature rise of the component. In order to determine the approximate total loss (or temperature rise) for a given

application, both copper losses and core losses should be taken into account.

🕐 Pulse

a **YAGEO** company

Estimated Temperature Rise:

Trise = [Total loss (mW) / K0].833 (°C)

Total Loss = Copper loss + Core loss (mW)

Copper loss = I_{RMS}^2 x DCR (Typical) (mW)

Irms = $[I_{DC}^2 + \Delta I^2 / 12]^{1/2}$ (A)

Core loss = K1 x f (kHz)^{1.23} x Bac (Ga)^{2.38} (mW)

Bac (peak to peak flux density) = K2 x Δ I (Ga) [= K2/L (μ H) x Et (V- μ Sec) (Ga)] where function between 2KHz and 1MHz and Pacific

where f varies between 25kHz and 1MHz, and Bac is less than 2500 Gauss.

K2 is a core size and winding dependent value and is given for each p/n in the proceeding datasheets. K0 & K1 are platform and material dependant constants and are given in the table below for each platform.

Part No.	Trise Factor (KO)	Core Loss Factor (K1)	
PG0087	5.8	15.2E-10	

Take note that the component's temperature rise varies depending on the system condition. It is suggested that the component be tested at the system level, to verify the temperature rise of the component during system operation.

2

SMT Power Inductors

Shielded Drum Core - PG0087NL Series

INDUCTANCE VS CURRENT

For More Information:

Americas - prodinfo_power_americas@pulseelectronics.com | Europe - prodinfo_power_emea@pulseelectronics.com | Asia - prodinfo_power_asia@pulseelectronics.com

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2020. Pulse Electronics, Inc. All rights reserved.

3

SPM2007_17.C (11/21)

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

<section-header></section-header>		
Herein Harris Harris Harris Harris	Handbard Barran and Angel	A SA B CONTRACTOR OF A SA CONTRA

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.