

9DB633AFLF Datasheet

www.digi-electronics.com

Ν

DiGi Electronics Part Number	9DB633AFLF-DG
Manufacturer	Renesas Electronics Corporation
Manufacturer Product Number	9DB633AFLF
Description	IC CLK FANOUT/BUFF ZD 28SSOP
Detailed Description	PCI Express (PCIe) Fanout Buffer (Distribution), Zero Delay Buffer IC 110MHz 1 Output 28-SSOP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
9DB633AFLF	Renesas Electronics Corporation
Series:	Product Status:
	Obsolete
DiGi-Electronics Programmable:	PLL:
Not Verified	Yes
Main Purpose:	Input:
PCI Express (PCIe)	Clock
Output:	Number of Circuits:
HCSL	1
Ratio - Input:Output:	Differential - Input:Output:
1:6	Yes/Yes
Frequency - Max:	Voltage - Supply:
110MHz	3.135V ~ 3.465V
Operating Temperature:	Mounting Type:
0°C ~ 70°C	Surface Mount
Package / Case:	Supplier Device Package:
28-SSOP (0.209", 5.30mm Width)	28-SSOP
Base Product Number:	
9DB633	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.39.0001	

RENESAS

Six Output Differential Buffer for PCIe Gen3

9DB633

Recommended Application:

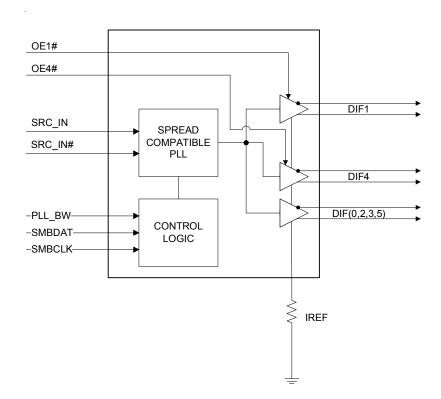
6 output PCIe Gen3 zero-delay/fanout buffer

General Description:

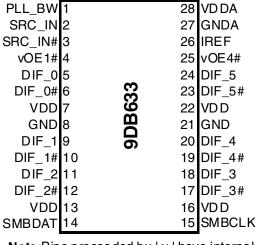
The 9DB633 zero-delay buffer supports PCIe Gen3 requirements, while being backwards compatible to PCIe Gen2 and Gen1. The 9DB633 is driven by a differential SRC output pair from an IDT 932S421 or 932SQ420 or equivalent main clock generator. It attenuates jitter on the input clock and has a selectable PLL bandwidth to maximize performance in systems with or without Spread-Spectrum clocking. An SMBus interface allows control of the PLL bandwidth and bypass options, while 2 clock request (OE#) pins make the 9DB633 suitable for Express Card applications.

Key Specifications:

- Cycle-to-cycle jitter < 50 ps
- Output-to-output skew < 50 ps
- PCIe Gen3 phase jitter < 1.0ps RMS


Block Diagram

Features/Benefits:


- OE# pins/Suitable for Express Card applications
- PLL or bypass mode/PLL can dejitter incoming clock
- Selectable PLL bandwidth/minimizes jitter peaking in downstream PLL's
- Spread Spectrum Compatible/tracks spreading input clock for low EMI
- SMBus Interface/unused outputs can be disabled

Output Features:

6 - 0.7V current mode differential HCSL output pairs

Pin Configuration

Note:Pins preceeded by 'v ' have internal 120K ohm pull down resistors

Power Distribution Table

Pin N	lumber	Description			
VDD	GND	Description			
7, 13, 16, 22	8,21	Differential Outputs			
13	8	SMBus			
N/A	27	IREF			
28	27	Analog VDD & GND for PLL core			

Pin Description

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
			3.3V input for selecting PLL Band Width
1	PLL_BW	IN	0 = low, 1 = high
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	vOE1#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
5	DIF_0	OUT	0.7V differential true clock output
6	DIF_0#	OUT	0.7V differential Complementary clock output
7	VDD	PWR	Power supply, nominal 3.3V
8	GND	IN	Ground pin.
9	DIF_1	OUT	0.7V differential true clock output
10	DIF_1#	OUT	0.7V differential Complementary clock output
11	DIF_2	OUT	0.7V differential true clock output
12	DIF_2#	OUT	0.7V differential Complementary clock output
13	VDD	PWR	Power supply, nominal 3.3V
14	SMBDAT	ΙΟ	Data pin of SMBUS circuitry, 5V tolerant
15	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
16	VDD	PWR	Power supply, nominal 3.3V
17	DIF_3#	OUT	0.7V differential Complementary clock output
18	DIF_3	OUT	0.7V differential true clock output
19	DIF_4#	OUT	0.7V differential Complementary clock output
20	DIF_4	OUT	0.7V differential true clock output
21	GND	PWR	Ground pin.
22	VDD	PWR	Power supply, nominal 3.3V
23	DIF_5#	OUT	0.7V differential Complementary clock output
24	DIF_5	OUT	0.7V differential true clock output
25	vOE4#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs
26	IREF	OUT	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. 4750hm is the standard value for 1000hm differential impedance. Other impedances require different values. See data sheet.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Note:

Pins preceeded by 'v ' have internal 120K ohm pull down resistors

Datasheet

Electrical Characteristics - Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V _{IL}		GND-0.5			V	1
Input High Voltage	V _{IH}	Except for SMBus interface			V_{DD} +0.5V	V	1
Input High Voltage	VIHSMB	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics - Input/Supply/Common Parameters

TA = T_{COM} or T_{IND} : Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating	Т _{СОМ}	Commmercial range	0		70	°C	1
Temperature	T _{IND}	Industrial range	-40		85	°C	1
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	V	1
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	V	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Input Current	I _{INP}	$\label{eq:single-ended} Single-ended inputs $$V_{IN} = 0 V$; Inputs with internal pull-up resistors $$V_{IN} = VDD$; Inputs with internal pull-down resistors $$$	-200		200	uA	1
Input Frequency	F _{ibyp}	V _{DD} = 3.3 V, Bypass mode	10		110	MHz	2
input Frequency	Fipll	$V_{DD} = 3.3 V$, 100MHz PLL mode	33	100.00	110	MHz	2
Pin Inductance	L _{pin}				7	nH	1
	CIN	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	CINDIF_IN	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	COUT	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V_{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1.8	ms	1,2
Input SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	cycles	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	VILSMB				0.8	V	1
SMBus Input High Voltage	VIHSMB		2.1		V _{DDSMB}	V	1
SMBus Output Low Voltage	VOLSMB	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V _{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

IDT[®] Six Output Differential Buffer for PCIe Gen3

© 2019 Renesas Electronics Corporation

Datasheet

Electrical Characteristics - DIF_IN Clock Input Parameters

T_{AMB}=T_{COM} or T_{IND} unless otherwise indicated, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

					0		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input Crossover Voltage - DIF_IN	V _{CROSS}	Cross Over Voltage	150	375	900	mV	1
Input Swing - DIF_IN	V _{SWING}	Differential value	300			mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	1		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d_{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J _{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics - DIF 0.7V Current Mode Differential Outputs

 $T_A = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	0.6	2.5	4	V/ns	1, 2, 3
Slew rate matching	∆Trf	Slew rate matching, Scope averaging on		9.5	20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging	660	740	850	mV	1
Voltage Low	VLow	on)	-150	8	150	IIIV	1
Max Voltage	Vmax	Measurement on single ended signal using absolute		760	1150	mV	1
Min Voltage	Vmin	value. (Scope averaging off)	-300	-3		IIIV	1
Vswing	Vswing	Scope averaging off	300	1506		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	378	550	mV	1, 5
Crossing Voltage (var)	Δ -Vcross	Scope averaging off		54	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/($3xR_R$). For $R_R = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6 x I_{REF}$ and $V_{OH} = 0.7V$ @ $Z_O = 50\Omega$ (100 Ω differential impedance).

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

Electrical Characteristics - Current Consumption

TA = T_{COM} or T_{IND} : Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, $C_L = Full load;$		134	150	mA	1
Powerdown Current	I _{DD3.3PD}	All diff pairs driven			N/A	mA	1
r owerdown Carrent	I _{DD3.3PDZ}	All differential pairs tri-stated			N/A	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

Datasheet

Electrical Characteristics - Output Duty Cycle, Jitter, Skew and PLL Characterisitics

TA = T_{COM} or T_{IND} : Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	BW	-3dB point in High BW Mode	2	2.3	4	MHz	1
PLL Bandwidth	DVV	-3dB point in Low BW Mode	0.4	0.5	1	MHz	1
PLL Jitter Peaking	t _{JPEAK}	Peak Pass band Gain		1	2	dB	1
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	48	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-2	1	2	%	1,4
Skow Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	2500	3660	4500	ps	1
Skew, Input to Output	t _{pdPLL}	Hi BW PLL Mode V _T = 50%	-250	0	250	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%		15	50	ps	1
Jitter, Cycle to cycle	+	PLL mode		40	50	ps	1,3
Sitter, Cycle to Cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode		10	50	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

 2 I_{REF} = V_{DD}/(3xR_R). For R_R = 475 Ω (1%), I_{REF} = 2.32mA. I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ Z_O=50 Ω .

³ Measured from differential waveform

⁴ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

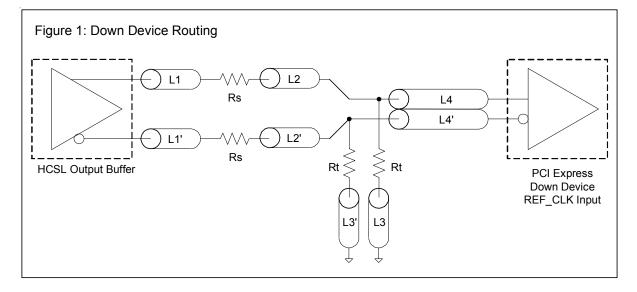
Electrical Characteristics - PCIe Phase Jitter Parameters

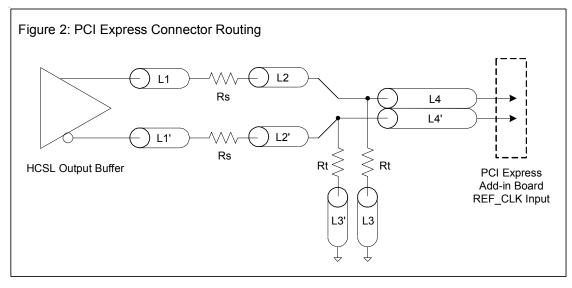
TA = T_{COM} or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

					-		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Phase Jitter, PLL Mode	t _{jphPCleG1}	PCIe Gen 1		32	86	ps (p-p)	1,2,3
	+	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		1.1	3	ps (rms)	1,2
	tjphPCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.3	3.1	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.5	1	ps (rms)	1,2,4
	t _{jphPCleG1}	PCIe Gen 1		2	5	ps (p-p)	1,2,3
Additive Phase Jitter,	+	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.2	0.3	ps (rms)	1,2
Bypass Mode	ljphPCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.8	1	ps (rms)	1,2
	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.1	0.2	ps (rms)	1,2,4

¹ Applies to all outputs.

² See http://www.pcisia.com for complete specs

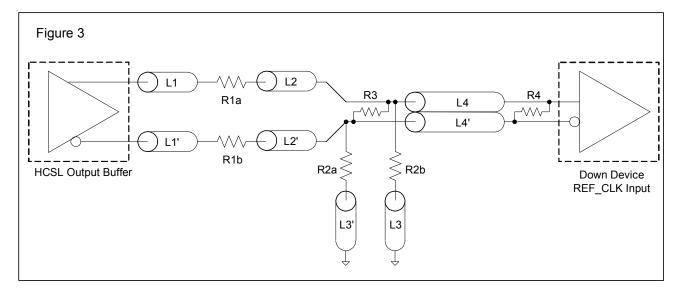

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.


⁴ Subject to final radification by PCI SIG.

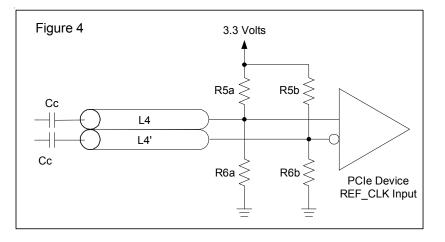
SRC Reference Clock										
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure							
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1							
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1							
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1							
Rs	33	ohm	1							
Rt	49.9	ohm	1							

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



IDT[®] Six Output Differential Buffer for PCIe Gen3


	Alternative Termination for LVDS and other Common Differential Signals (figure 3)									
Vdiff Vp-p Vcm R1 R2 R3 R4 Note							Note			
0.45v	0.22v	1.08	33	150	100	100				
0.58	0.28	0.6	33	78.7	137	100				
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible			
0.60	0.3	1.2	33	174	140	100	Standard LVDS			

R1a = R1b = R1

R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)								
Component	Value	Note						
R5a, R5b	8.2K 5%							
R6a, R6b	1K 5%							
Сс	0.1 µF							
Vcm	0.350 volts							

Datasheet

General SMBus serial interface information for the 9DB633

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D4 (H)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) sends the data byte count = X
- ICS clock will *acknowledge*
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D4 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D5 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Ind	Index Block Write Operation								
Cor	ntroller (Host)		ICS (Slave/Receiver)						
Т	starT bit								
Slav	e Address D4 _(H)								
WR	WRite								
			ACK						
Begi	nning Byte = N								
		ACK							
Data	Byte Count = X								
			ACK						
Begir	ning Byte N								
			ACK						
	\diamond	e							
	\diamond	X Byte	♦						
	\diamond	\times	<u> </u>						
			\$						
Byte	e N + X - 1								
			ACK						
Р	stoP bit								

Ind	Index Block Read Operation								
Cor	troller (Host)	IC	S (Slave/Receiver)						
Т	starT bit								
Slave	e Address D4 _(H)								
WR	WRite								
			ACK						
Begi	nning Byte = N								
			ACK						
RT	Repeat starT								
Slave	e Address D5 _(H)								
RD	RD ReaD								
	•	ACK							
		D	ata Byte Count = X						
	ACK								
			Beginning Byte N						
	ACK								
		Byte	0						
	0	X B)	0						
0			0						
0									
			Byte N + X - 1						
N	Not acknowledge								
Р	stoP bit								

SMBusTable: Device Control Register, READ/WRITE ADDRESS (D5/D4)

Byte	0 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	SW_EN	Enables SMBus Control of bits (1:0)	RW	PLL controlled by SMBus registers	PLL controlled by device pins	1
Bit 6	-	RESE	RESERVED		-		Х
Bit 5	-	RESE	RESERVED		-		Х
Bit 4	-	RESE	RESERVED		-		Х
Bit 3	-	RESE	ERVED	RW		-	Х
Bit 2	-	RESE	ERVED	RW		-	Х
Bit 1	-	PLL BW #adjust	Selects PLL Bandwidth	RW	Low BW	High BW	1
Bit 0	-	PLL Enable	Bypasses PLL for board test	RW	PLL bypassed (fan out mode)		1

SMBusTable: Output Enable Register

Byte	1 Pin #	Name	Control Function	Туре	0 1		Default
Bit 7	-	RESI	ERVED	RW	-		Х
Bit 6	-	RESI	RESERVED			-	Х
Bit 5	24,23	PCIEX5	Output Control	RW	Disable	Enable	1
Bit 4	-	RESI	RESERVED		-		Х
Bit 3	18,17	PCIEX3	Output Control	RW	Disable	Enable	1
Bit 2	11,12	PCIEX2	Output Control	RW	Disable	Enable	1
Bit 1	-	RESI	RESERVED			-	Х
Bit 0	5,6	PCIEX0	Output Control	RW	Disable	Enable	1

SMBusTable: Function Select Register

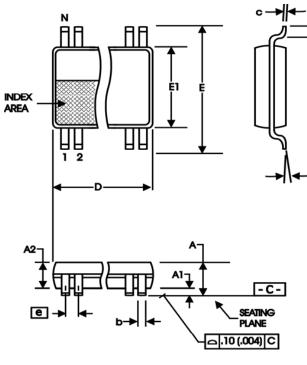
Byte 2 Pin #		Name	Control Function	Туре	0	1	Default	
Bit 7			RESERVED		RW		-	Х
Bit 6			RESERVED		RW		-	Х
Bit 5	-		RESERVED		RW		-	Х
Bit 4	-		RESE	RESERVED			-	Х
Bit 3	-		RESE	RESERVED			-	Х
Bit 2	-		RESE	RESERVED			-	Х
Bit 1	-		RESE	RESERVED			-	Х
Bit 0	-		RESE	ERVED	RW		-	Х

SMBusTable: Vendor & Revision ID Register

Byte	3 Pin	# Name	Control Function	Туре	0	1	Default
Bit 7	-	RID3		R	-	-	0
Bit 6	-	RID2	REVISION ID	R	-	-	0
Bit 5	-	RID1		R	-	-	0
Bit 4	-	RID0		R	-	-	1
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2		R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	_	0
Bit 0	-	VID0		R	-	-	1

Datasheet

SMBusTable: DEVICE ID


Byte	4 Pin	# Name	Control Function	Туре	0	1	Default
Bit 7	-			R		-	0
Bit 6	-			R		-	0
Bit 5	-			R		-	0
Bit 4	-	Dev	Device ID			-	0
Bit 3	-	= 0	6 Hex	R		-	0
Bit 2	-			R		-	1
Bit 1	-			R		-	1
Bit 0	-			R		-	0

SMBusTable: Byte Count Register

Byte	5	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-		BC7		RW	-	-	0
Bit 6	-		BC6	Writing to this	RW	-	-	0
Bit 5	-		BC5	register will	RW	-	-	0
Bit 4	-		BC4	configure how	RW	-	-	0
Bit 3	-		BC3	many bytes will be	RW	-	-	0
Bit 2	-		BC2	read back, default	RW	-	-	1
Bit 1	-		BC1	is 06 = 6 bytes.	RW	-	-	1
Bit 0	-		BC0		RW	-	-	0

Datasheet

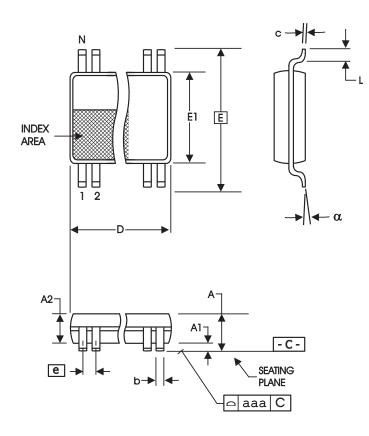
28-pin SSOP Package Drawing and Dimensions

		209 mil SSOP		
	In Milli	meters	In In	ches
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
Α		2.00		.079
A1	0.05		.002	
A2	1.65	1.85	.065	.073
b	0.22	0.38	.009	.015
С	0.09	0.25	.0035	.010
D	SEE VAF	RIATIONS	SEE VARIATIONS	
E	7.40	8.20	.291	.323
E1	5.00	5.60	.197	.220
е	0.65 BASIC		0.0256 BASIC	
L	0.55	0.95	.022	.037
N	SEE VARIATIONS		SEE VARIATIONS	
α	0°	8°	0°	8°

VARIATIONS

α

N	Dn	nm.	D (inch)	
IN	MIN	MAX	MIN	MAX
28	9.90	10.50	.390	.413


Reference Doc.: JEDEC Publication 95, MO-150

10-0033

209 mil SSOP

Datasheet

28-pin TSSOP Package Drawing and Dimensions

	(173 mi	il) (25.6 n	nil)	
	In Milli	meters	In Ir	iches
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS
	MIN	MAX	MIN	MAX
А		1.20		.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.19	0.30	.007	.012
С	0.09	0.20	.0035	.008
D	SEE VAF	RIATIONS	SEE VAF	RIATIONS
E	6.40 E	BASIC	0.252 BASIC	
E1	4.30	4.50	.169	.177
е	0.65 E	BASIC	0.0256	BASIC
L	0.45	0.75	.018	.030
Ν	SEE VAF	RIATIONS	SEE VAF	RIATIONS
α	0°	8°	0°	8°
aaa		0.10		.004

4.40 mm. Body, 0.65 mm. Pitch TSSOP

VARIATIONS

Ν	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
28	9.60	9.80	.378	.386

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DB633AFLF	Tubes	28-pin SSOP	0 to +70°C
9DB633AFLFT	Tape and Reel	28-pin SSOP	0 to +70°C
9DB633AFILF	Tubes	28-pin SSOP	-40 to +85°C
9DB633AFILFT	Tape and Reel	28-pin SSOP	-40 to +85°C
9DB633AGLF	Tubes	28-pin TSSOP	0 to +70°C
9DB633AGLFT	Tape and Reel	28-pin TSSOP	0 to +70°C
9DB633AGILF	Tubes	28-pin TSSOP	-40 to +85°C
9DB633AGILFT	Tape and Reel	28-pin TSSOP	-40 to +85°C

"LF" after the package code are the Pb-Free configuration and are RoHS compliant. "A" is the device revision designator (will not correlate to the datasheet revision).

Revision History

Rev.	Originator	Issue Date	Description	Page #
Α	RDW	6/30/2010	Released to final	
В	RDW	7/12/2010	Changed "PWD" to "Default" in SMBus Register descriptions	10,11
С	RDW	4/20/2011	Changed pull down indicator from '**' to 'v'.	
			Corrected typo for 28SSOP T&R orderable part number; "I" and "L" were	
D	RDW	10/22/2013	swapped.	13
E	RDW	2/19/2014	Corrected typo for Read/Write address from D4/D5 to D5/D4 respectively	9,10
F	RDW	10/20/2016	Updated input clock electrical table to latest format. No change to form, fit or	5
			function of the device	Ĵ

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.