

MCP6295-E/MS Datasheet

www.digi-electronics.com

Ma

DiGi Electronics Part Number	MCP6295-E/MS-DG
Manufacturer	Microchip Technology
Manufacturer Product Number	MCP6295-E/MS
Description	IC OPAMP GP 2 CIRCUIT 8MSOP
Detailed Description	General Purpose Amplifier 2 Circuit Rail-to-Rail 8-M SOP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MCP6295-E/MS	Microchip Technology
Series:	Product Status:
	Active
Amplifier Type:	Number of Circuits:
General Purpose	2
Output Type:	Slew Rate:
Rail-to-Rail	7V/µs
Gain Bandwidth Product:	Current - Input Bias:
10 MHz	1 pA
Voltage - Input Offset:	Current - Supply:
3 mV	1mA (x2 Channels)
Current - Output / Channel:	Voltage - Supply Span (Min):
25 mA	2.4 V
Voltage - Supply Span (Max):	Operating Temperature:
6 V	-40°C ~ 125°C (TA)
Mounting Type:	Package / Case:
Surface Mount	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package:	Base Product Number:
8-MSOP	MCP6295

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8542.33.0001	

1.0 mA, 10 MHz Rail-to-Rail Op Amp

Features

- Gain Bandwidth Product: 10 MHz (typical)
- Supply Current: I_Q = 1.0 mA
- Supply Voltage: 2.4V to 6.0V
- Rail-to-Rail Input/Output
- Extended Temperature Range: -40°C to +125°C
- Available in Single, Dual and Quad Packages
- High Temperature Range: -40°C to +150°C
- Single with CS (MCP6293)
- Dual with CS (MCP6295)

Applications

- Automotive (see Product Identification System (Automotive))
- AEC-Q100 Qualified. Grade 1.
- AEC-Q100 Qualified, Grade 0 (MCP6292 H-Temp)
- Portable Equipment
- Photodiode Amplifier
- Analog Filters
- Notebooks and PDAs
- · Battery-Powered Systems

Design Aids

- · SPICE Macro Models
- FilterLab[®] Software

Package Types

Mindi[™] Simulation Tool

- MAPS (Microchip Advanced Part Selector)
- Analog Demonstration and Evaluation Boards
- Application Notes

Description

The Microchip Technology Inc. MCP6291/1R/2/3/4/5 family of operational amplifiers (op amps) provide wide bandwidth for the current. This family has a 10 MHz Gain Bandwidth Product (GBWP) and a 65° phase margin. This family also operates from a single supply voltage as low as 2.4V, while drawing 1 mA (typical) quiescent current. In addition, the MCP6291/1R/2/3/4/5 supports rail-to-rail input and output swing, with a Common-mode input voltage range of V_{DD} + 300 mV to V_{SS} – 300 mV. This family of operational amplifiers is designed with Microchip's advanced CMOS process.

The MCP6295 has a Chip Select $\overline{(CS)}$ input for dual op amps in an 8-pin package. This device is manufactured by cascading the two op amps, with the output of op amp A being connected to the noninverting input of op amp B. The \overline{CS} input puts the device in a Low-power mode.

The MCP6291/1R/2/3/4/5 family operates over the extended temperature range of -40°C to +125°C. The MCP6292 H-Temp part is available in the 8-Lead MSOP package and operates over the high temperature range of -40°C to +150°C. It also has a power supply range of 2.4V to 6.0V.

MCP6291 MCP6291 MCP6291R MCP6292 PDIP. SOIC. MSOP PDIP, SOIC, MSOP SOT-23-5 SOT-23-5 NC 1 8 NC VOUTA 1 8 V_{DD} V_{OUT} 1 5 V_{DD} 5 V_{SS} V_{OUT} 1 7 V_{DD} V_{IN} 2 7 V_{OUTB} V_{INA}– 2 V_{DD} 2 V_{SS} 2 V_{IN}+ 3 6 Vout 6 V_{INB}-V_{INA}+ 3 4 V_{IN}-V_{IN}+ 3 4 V_{IN}-V_{IN}+ 3 V_{SS} 4 5 NC V_{SS} 4 5 V_{INB}+ **MCP6293** MCP6293 **MCP6294** MCP6295 PDIP, SOIC, MSOP PDIP. SOIC. TSSOP SOT-23-6 PDIP, SOIC, MSOP NC 1 8 CS V_{OUTA} 1 14 V_{OUTD} V_{OUTA}/V_{INB}+ 1 6 V_{DD} 8 V_{DD} V_{OUT} 1 7 V_{DD} V_{IN}- 2 13 V_{IND}-V_{INA}-2 5 CS V_{INA}-2 7 V_{OUTB} V_{SS} 2 6 V_{OUT} V_{IN}+ 3 V_{INA}+ 3 12 V_{IND}+ 4 V_{IN}-V_{INA}+ 3 6 V_{INB}-V_{IN}+ 3 V_{SS} 4 5 NC 11 V_{SS} V_{DD} 4 V_{SS} 4 5 CS 10 VINC+ V_{INB}+ 5 V_{INB}- [6 9 V_{INC}-V_{OUTB} 7 8 V_{OUTC}

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} – V _{SS}	
Current at Input Pins	±2 mA
Analog Inputs (V _{IN} +, V _{IN} –) ††	$V_{SS} - 1.0V$ to $V_{DD} + 1.0V$
All Other Inputs and Outputs	$V_{SS} - 0.3V$ to $V_{DD} + 0.3V$
Difference Input Voltage	V _{DD} – V _{SS}
Output Short Circuit Current +++	Continuous
Current at Output and Supply Pins +++	±30 mA
Storage Temperature	–65°C to +150°C
Maximum Junction Temperature (T _J)	+155°C
ESD Protection On All Pins (HBM; CDM; MM)	≥ 4 kV; 2 kV; 400V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.1.2 "Input Voltage and Current Limits".

††† Continuous short circuit at high temperatures may damage the device. See Figure 2-45 for safe operating range.

DC ELECTRICAL SPECIFICATIONS

$V_{CM} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and \overline{CS} is tied low (refer to Figure 1-2 and Figure 1-3).									
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions			
Input Offset									
Input Offset Voltage	V _{OS}	-3.0	_	+3.0	mV	V _{CM} = V _{SS} (Note 1)			
Input Offset Voltage (High Temperature)	V _{OS}	-5.0	_	+5.0	mV	T _A = -40°C to +150°C, V _{CM} = V _{SS} (Note 6)			
Input Offset Temperature Drift	$\Delta V_{OS} / \Delta T_A$	—	±1.7	—	µV/°C	T _A = -40°C to +125°C, V _{CM} = V _{SS} (Note 1)			
Power Supply Rejection Ratio	PSRR	70	90	_	dB	V _{CM} = V _{SS} (Note 1)			
Input Bias, Input Offset Current and	I Impedance								
Input Bias Current	I _B	_	±1.0	—	pА	Note 2			
At Temperature	I _B	—	50	200	pА	T _A = +85°C (Note 2)			
At Temperature	I _B	—	2	5	nA	T _A = +125°C (Note 2)			
At Temperature	ا _B	—	15	25	nA	T _A = +150°C (Note 6)			
Input Offset Current	I _{OS}	—	±1.0	—	pА	Note 3			
At Temperature	I _{OS}	-3.5	±1.0	+3.5	nA	T _A = +150°C (Note 6)			
Common-mode Input Impedance	Z _{CM}	—	10 ¹³ 6	—	Ω pF	Note 3			
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 3	—	Ω pF	Note 3			
Common-mode (Note 4)									
Common-mode Input Range	V _{CMR}	$V_{SS} - 0.3$	_	V _{DD} + 0.3	V				
Common-mode Rejection Ratio	CMRR	70	85	_	dB	V_{CM} = -0.3V to 2.5V, V_{DD} = 5V			
Common-mode Rejection Ratio	CMRR	65	80	_	dB	V_{CM} = -0.3V to 5.3V, V_{DD} = 5V			

Note 1: The MCP6295's V_{CM} for op amp B (pins V_{OUTA}/V_{INB}+ and V_{INB}-) is V_{SS} + 100 mV.

2: The current at the MCP6295's V_{INB} pin is specified by I_B only.

3: This specification does not apply to the MCP6295's V_{OUTA}/V_{INB} + pin.

4: The MCP6295's V_{INB}- pin (op amp B) has a Common-mode range (V_{CMR}) of V_{SS} + 100 mV to V_{DD} - 100 mV. The MCP6295's V_{OUTA}/V_{INB}+ pin (op amp B) has a voltage range specified by V_{OH} and V_{OL}.

5: All parts with date codes November 2007 and later have been screened to ensure operation at V_{DD} = 6.0V. However, the other minimum and maximum specifications are measured at 2.4V and or 5.5V.

6: This specification at +150°C only applies to MCP6292 H-Temp parts.

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics : Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.4V$ to $+5.5V$, $V_{SS} = GND$, $V_{OUT} \approx V_{DD}/2$, $V_{CM} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L and \overline{CS} is tied low (refer to Figure 1-2 and Figure 1-3).						
Parameters	Svm.	Min.	Typ.	Max.	Units	Conditions

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
DC Open-Loop Gain (Large Signal)	A _{OL}	90	110	—	dB	$V_{OUT} = 0.2V$ to $V_{DD} - 0.2V$, $V_{CM} = V_{SS}$ (Note 1)
Output						
Maximum Output Voltage Swing	V _{OL} , V _{OH}	V _{SS} + 15	_	V _{DD} – 15	mV	0.5V Input Overdrive
Maximum Output Voltage Swing (High Temperature)	V _{OL} , V _{OH}	V _{SS} + 15		V _{DD} – 15	mV	T _A = +150°C (Note 6) 0.5V Input Overdrive
Output Short Circuit Current	I _{SC}	—	±25	—	mA	
Power Supply						
Supply Voltage	V _{DD}	2.4	_	6.0	V	T _A = -40°C to +125°C (Note 5)
Supply Voltage	V _{DD}	2.4	_	6.0	V	T _A = -40°C to +150°C (Note 6)
Quiescent Current per Amplifier	Ι _Q	0.7	1.0	1.3	mA	I _O = 0
Quiescent Current per Amplifier (High Temperature)	Ι _Q	0.9	1.2	1.5	mA	I _O = 0 T _A = +150°C (Note 6)

Note 1: The MCP6295's V_{CM} for op amp B (pins V_{OUTA}/V_{INB}+ and V_{INB}-) is V_{SS} + 100 mV.

2: The current at the MCP6295's V_{INB} pin is specified by I_B only.

3: This specification does not apply to the MCP6295's V_{OUTA}/V_{INB}+ pin.

4: The MCP6295's V_{INB}- pin (op amp B) has a Common-mode range (V_{CMR}) of V_{SS} + 100 mV to V_{DD} - 100 mV. The MCP6295's V_{OUTA}/V_{INB}+ pin (op amp B) has a voltage range specified by V_{OH} and V_{OL}.

5: All parts with date codes November 2007 and later have been screened to ensure operation at V_{DD} = 6.0V. However, the other minimum and maximum specifications are measured at 2.4V and or 5.5V.

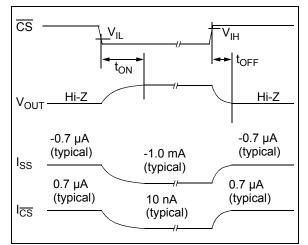
6: This specification at +150°C only applies to MCP6292 H-Temp parts.

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = \pm 25^{\circ}C$, $V_{DD} = \pm 2.4V$ to $\pm 5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$, and \overline{CS} is tied low (refer to Figure 1-2 and Figure 1-3).

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Falameters	Synn.	WIIII.	тур.	IVIAX.	Units	Conditions
AC Response						
Gain Bandwidth Product	GBWP	_	10.0		MHz	
Phase Margin at Unity-Gain	PM	_	65	—	٥	G = +1 V/V
Slew Rate	SR	_	7	-	V/µs	
Noise						
Input Noise Voltage	E _{ni}	_	4.2	_	μV _{P-P}	f = 0.1 Hz to 10 Hz
Input Noise Voltage Density	e _{ni}	_	8.7	_	nV/√Hz	f = 10 kHz
Input Noise Current Density	i _{ni}		3	_	fA/√Hz	f = 1 kHz

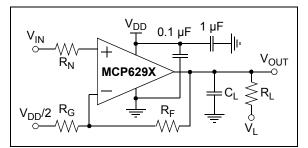
MCP6293/MCP6295 CHIP SELECT (CS) SPECIFICATIONS

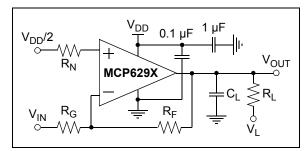

Electrical Characteristics: Unless otherwise indicated, $T_A = \pm 25^{\circ}C$, $V_{DD} = \pm 2.4V$ to $\pm 5.5V$, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$, and \overline{CS} is tied low (refer to Figure 1-2 and Figure 1-3).								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
CS Low Specifications								
CS Logic Threshold, Low	V _{IL}	V _{SS}	_	0.2 V _{DD}	V			
CS Input Current, Low	I _{CSL}	_	0.01	_	μA	$\overline{\text{CS}} = \text{V}_{\text{SS}}$		
CS High Specifications								
CS Logic Threshold, High	V _{IH}	0.8 V _{DD}	_	V _{DD}	V			
CS Input Current, High	I _{CSH}	_	0.7	2	μA	$\overline{\text{CS}} = \text{V}_{\text{DD}}$		
GND Current per Amplifier	I _{SS}	—	-0.7	—	μA	$\overline{\text{CS}} = \text{V}_{\text{DD}}$		
Amplifier Output Leakage	_	_	0.01	—	μA	$\overline{\text{CS}} = \text{V}_{\text{DD}}$		
Dynamic Specifications (Note 1)						-		
CS Low to Valid Amplifier Output, Turn-on Time	t _{ON}	—	4	10	μs	$\label{eq:cs} \begin{array}{l} \overline{CS} \mbox{ Low} \leq 0.2 \ \mbox{V}_{DD}, \ \mbox{G} = +1 \ \mbox{V/V}, \\ \mbox{V}_{IN} = \mbox{V}_{DD}/2, \ \mbox{V}_{OUT} = 0.9 \ \mbox{V}_{DD}/2, \\ \mbox{V}_{DD} = 5.0 \ \mbox{V} \end{array}$		
CS High to Amplifier Output High-Z	t _{OFF}	—	0.01	—	μs	$\label{eq:constraint} \begin{array}{ c c } \hline \hline CS & \mbox{High} \geq 0.8 \ \mbox{V}_{DD}, \ \mbox{G} = +1 \ \mbox{V/V}, \\ \hline \mbox{V}_{IN} = \ \mbox{V}_{DD}/2, \ \mbox{V}_{OUT} = 0.1 \ \mbox{V}_{DD}/2 \end{array}$		
Hysteresis	V _{HYST}	_	0.6	_	V	V _{DD} = 5V		

Note 1: The input condition (V_{IN}) specified applies to both op amp A and B of the MCP6295. The dynamic specification is tested at the output of op amp B (V_{OUTB}).

TEMPERATURE SPECIFICATIONS

Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Operating Temperature Range (E Temp)	Τ _Α	-40	_	+125	°C	Note
Operating Temperature Range (H Temp)	T _A	-40	_	+150	°C	
Storage Temperature Range	T _A	-65	_	+150	°C	
Thermal Package Resistances	•	•			•	•
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	256	_	°C/W	
Thermal Resistance, 6L-SOT-23	θ_{JA}	—	230	_	°C/W	
Thermal Resistance, 8L-PDIP	θ_{JA}	—	85	_	°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	—	163	_	°C/W	
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	_	°C/W	
Thermal Resistance, 14L-PDIP	θ_{JA}	—	70	_	°C/W	
Thermal Resistance, 14L-SOIC	θ_{JA}	—	120	—	°C/W	
Thermal Resistance, 14L-TSSOP	θ _{JA}	_	100	_	°C/W	


Note: The Junction Temperature (T_j) must not exceed the Absolute Maximum specification of +155°C.


FIGURE 1-1: Timing Diagram for the Chip Select (CS) Pin on the MCP6293 and MCP6295.

1.1 Test Circuits

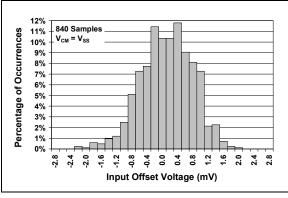
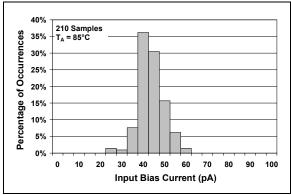
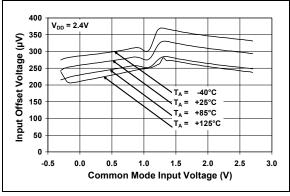
The test circuits used for the DC and AC tests are shown in Figure 1-2 and Figure 1-2. The bypass capacitors are laid out according to the rules discussed in **Section 4.6 "Supply Bypass**".

FIGURE 1-2: AC and DC Test Circuit for Most Noninverting Gain Conditions.

FIGURE 1-3: AC and DC Test Circuit for Most Inverting Gain Conditions.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

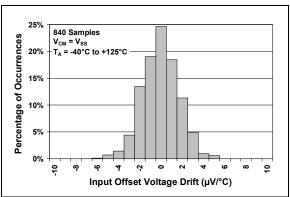

FIGURE 2-1: Input Offset Voltage.

FIGURE 2-2: Input Bias Current at $T_A = +85$ °C.

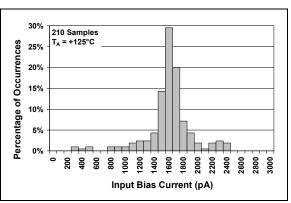
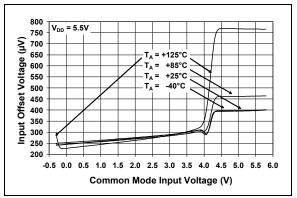


FIGURE 2-3: Input Offset Voltage vs. Common-mode Input Voltage at $V_{DD} = 2.4V$.



Input Offset Voltage Drift.

FIGURE 2-5: Input Bias Current at $T_A = +125$ °C.

FIGURE 2-6: Input Offset Voltage vs. Common-mode Input Voltage at V_{DD} = 5.5V.

TYPICAL PERFORMANCE CURVES (CONTINUED)

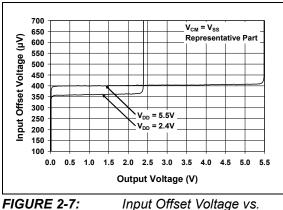
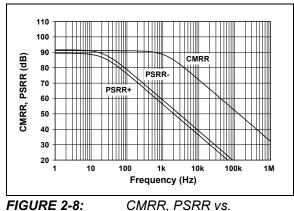
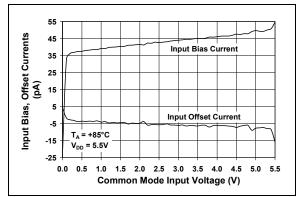
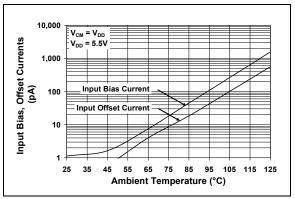
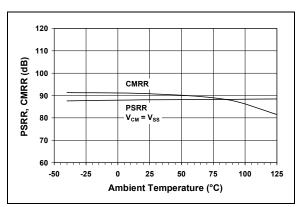


FIGURE 2-7: Inpu Output Voltage.


FIGURE 2-8: Frequency.

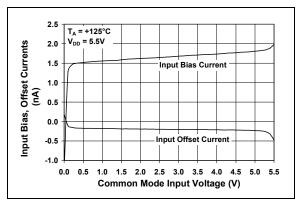

FIGURE 2-9: Input Bias, Offset Currents vs. Common-mode Input Voltage at $T_A = +85^{\circ}$ C.

FIGURE 2-10: Input Bias, Input Offset Currents vs. Ambient Temperature.

FIGURE 2-11: CMRR, PSRR vs. Ambient Temperature.

FIGURE 2-12: Input Bias, Offset Currents vs. Common-mode Input Voltage at $T_A = +125^{\circ}$ C.

TYPICAL PERFORMANCE CURVES (CONTINUED)

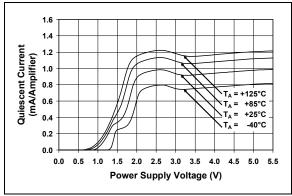


FIGURE 2-13: Quiescent Current vs. Power Supply Voltage.

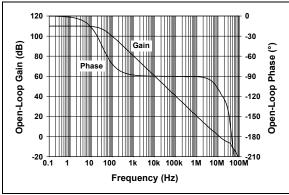
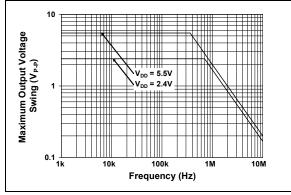



FIGURE 2-14: Open-Loop Gain, Phase vs. Frequency.

FIGURE 2-15: Maximum Output Voltage Swing vs. Frequency.

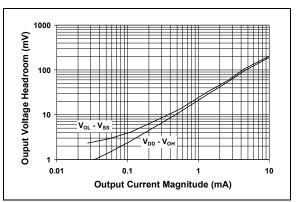
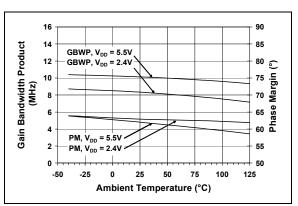



FIGURE 2-16: Output Voltage Headroom vs. Output Current Magnitude.

FIGURE 2-17: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

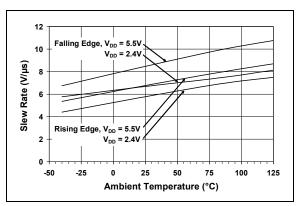


FIGURE 2-18: Slew Rate vs. Ambient Temperature.

TYPICAL PERFORMANCE CURVES (CONTINUED)

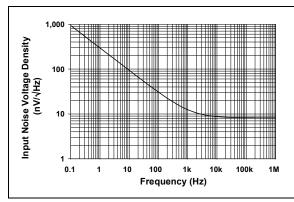
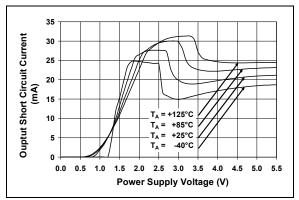
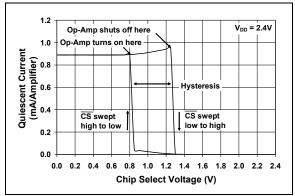




FIGURE 2-19: Input Noise Voltage Density vs. Frequency.

FIGURE 2-20: Output Short Circuit Current vs. Power Supply Voltage.

FIGURE 2-21: Quiescent Current vs. Chip Select (CS) Voltage at V_{DD} = 2.4V (MCP6293 and MCP6295 only).

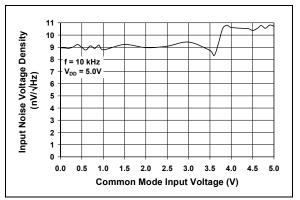


FIGURE 2-22: Input Noise Voltage Density vs. Common-mode Input Voltage at 10 kHz.

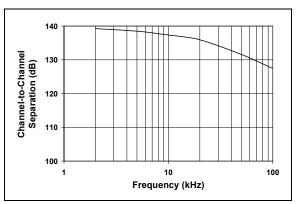
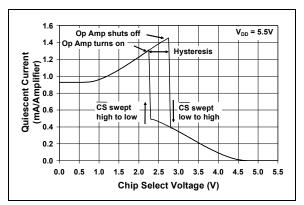
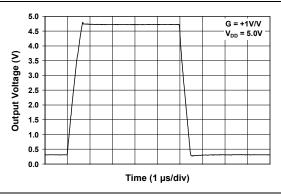




FIGURE 2-23: Channel-to-Channel Separation vs. Frequency (MCP6292, MCP6294 and MCP6295 only).

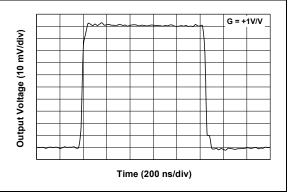


FIGURE 2-24: Quiescent Current vs. Chip Select (\overline{CS}) Voltage at V_{DD} = 5.5V (MCP6293 and MCP6295 only).

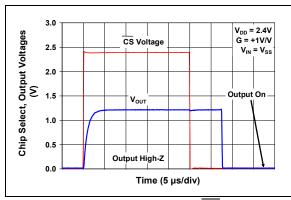

TYPICAL PERFORMANCE CURVES (CONTINUED)

FIGURE 2-25: Large-Signal Noninverting Pulse Response.

FIGURE 2-26: Small-Signal Noninverting Pulse Response.

FIGURE 2-27: Chip Select (\overline{CS}) to Amplifier Output Response Time at $V_{DD} = 2.4V$ (MCP6293 and MCP6295 only).

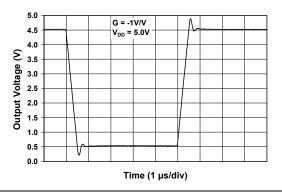
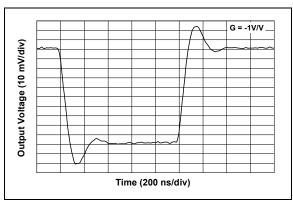
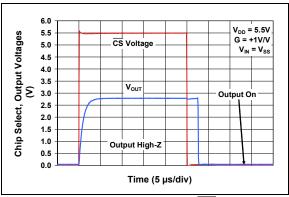




FIGURE 2-28: Large-Signal Inverting Pulse Response.

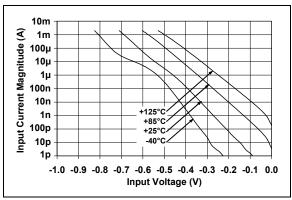


FIGURE 2-29: Small-Signal Inverting Pulse Response.

FIGURE 2-30: Chip Select (\overline{CS}) to Amplifier Output Response Time at V_{DD} = 5.5V (MCP6293 and MCP6295 only).

TYPICAL PERFORMANCE CURVES (CONTINUED)

FIGURE 2-31: Measured Input Current vs. Input Voltage (below V_{SS}).

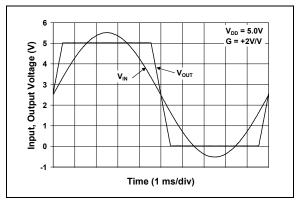
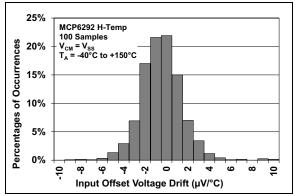
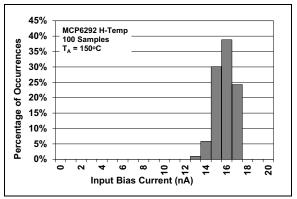
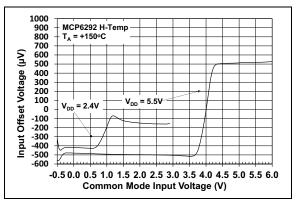


FIGURE 2-32: The MCP6291/1R/2/3/4/5 Show No Phase Reversal.

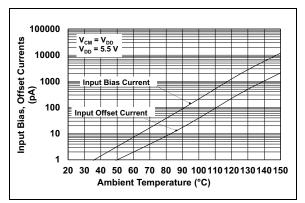
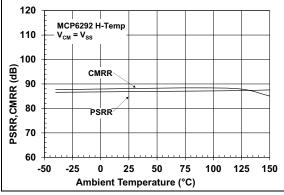
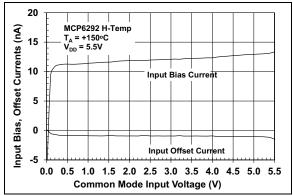
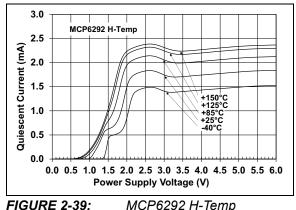

FIGURE 2-33: MCP6292 H-Temp Input Offset Voltage Drift.

FIGURE 2-34: MCP6292 H-Temp Input Bias Current at $T_A = +150^{\circ}$ C.

FIGURE 2-35: MCP6292 H-Temp Input Offset Voltage vs. Common-mode Input Voltage at TA = +150°C.

FIGURE 2-36: MCP6292 H-Temp Input Bias, Input Offset Currents vs. Ambient Temperature.

TYPICAL PERFORMANCE CURVES (CONTINUED)

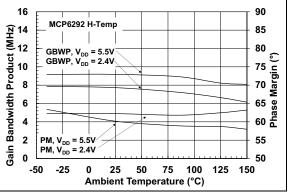

FIGURE 2-37: MCP6292 H-Temp CMRR, PSRR vs. Ambient Temperature.

FIGURE 2-38: MCP6292 H-Temp Input Bias, Offset Currents vs. Common-mode Input Voltage at $T_A = +150$ °C

Quiescent Current vs. Power Supply Voltage.

FIGURE 2-40: MCP6292 H-Temp Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

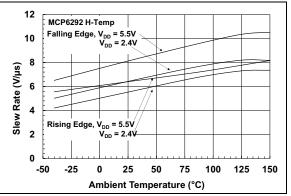


FIGURE 2-41: MCP6292 H-Temp Slew Rate vs. Ambient Temperature.

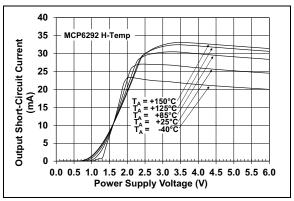
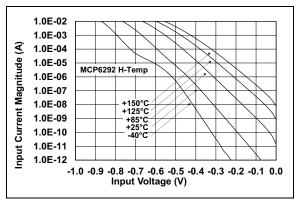
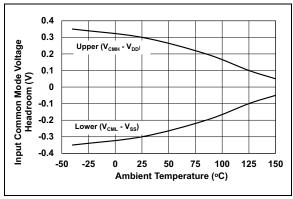




FIGURE 2-42: MCP6292 H-Temp Output Short Circuit Current vs. Power Supply Voltage.

TYPICAL PERFORMANCE CURVES (CONTINUED)

FIGURE 2-43: MCP6292 H-Temp Measured Input Current vs. Input Voltage (below V_{SS}).

FIGURE 2-44: Input Common Mode Voltage Headroom vs. Ambient Temperature.

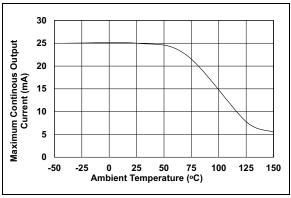


FIGURE 2-45: Maximum Continuous Output Current vs. Ambient Temperature.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).

TABLE 3-1: PIN FUNCTION TABLE FOR SINGLE OP AMPS

MCF	P6291		MCP6293			
PDIP, SOIC, MSOP	SOT-23-5	MCP6291R	PDIP, SOIC, MSOP	SOT-23-6	Symbol	Description
6	1	1	6	1	V _{OUT}	Analog Output
2	4	4	2	4	V _{IN} –	Inverting Input
3	3	3	3	3	V _{IN} +	Noninverting Input
7	5	2	7	6	V _{DD}	Positive Power Supply
4	2	5	4	2	V _{SS}	Negative Power Supply
_			8	5	CS	Chip Select
1,5,8	_	_	1,5	_	NC	No Internal Connection

TABLE 3-2:PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS

MCP6292	MCP6294	MCP6295	Symbol	Description
1	1	_	V _{OUTA}	Analog Output (op amp A)
2	2	2	V _{INA} –	Inverting Input (op amp A)
3	3	3	V _{INA} +	Noninverting Input (op amp A)
8	4	8	V _{DD}	Positive Power Supply
5	5		V _{INB} +	Noninverting Input (op amp B)
6	6	6	V _{INB} –	Inverting Input (op amp B)
7	7	7	V _{OUTB}	Analog Output (op amp B)
_	8	_	V _{OUTC}	Analog Output (op amp C)
—	9		V _{INC} -	Inverting Input (op amp C)
_	10	_	V _{INC} +	Noninverting Input (op amp C)
4	11	4	V _{SS}	Negative Power Supply
_	12		V _{IND} +	Noninverting Input (op amp D)
_	13	_	V _{IND} -	Inverting Input (op amp D)
_	14		V _{OUTD}	Analog Output (op amp D)
_		1	V _{OUTA} /V _{INB} +	Analog Output (op amp A)/Noninverting Input (op amp B)
_		5	CS	Chip Select

3.1 Analog Outputs

The output pins are low-impedance voltage sources.

3.2 Analog Inputs

The noninverting and inverting inputs are high-impedance CMOS inputs with low bias currents.

3.3 MCP6295's V_{OUTA}/V_{INB}+ Pin

For the MCP6295 only, the output of op amp A is connected directly to the noninverting input of op amp B; this is the V_{OUTA}/V_{INB} + pin. This connection makes it possible to provide a Chip Select pin for duals in 8-pin packages.

3.4 Chip Select Digital Input

This is a CMOS, Schmitt-triggered input that places the part into a low power mode of operation.

3.5 Power Supply Pins

The positive power supply (V_{DD}) is 2.4V to 6.0V higher than the negative power supply (V_{SS}) . For normal operation, the other pins are between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need bypass capacitors

4.0 APPLICATION INFORMATION

The MCP6291/1R/2/3/4/5 family of op amps is manufactured using Microchip's state of the art CMOS process, specifically designed for low-cost, low-power and general purpose applications. The low supply voltage, low quiescent current and wide bandwidth makes the MCP6291/1R/2/3/4/5 ideal for battery-powered applications.

4.1 Rail-to-Rail Inputs

4.1.1 PHASE REVERSAL

The MCP6291/1R/2/3/4/5 op amp is designed to prevent phase reversal when the input pins exceed the supply voltages. Figure 2-32 shows the input voltage exceeding the supply voltage without any phase reversal.

4.1.2 INPUT VOLTAGE AND CURRENT LIMITS

The ESD protection on the inputs can be depicted as shown in Figure 4-1. This structure was chosen to protect the input transistors, and to minimize input bias current (I_B). The input ESD diodes clamp the inputs when they try to go more than one diode drop below V_{SS} . They also clamp any voltages that go too far above V_{DD} ; their breakdown voltage is high enough to allow normal operation, and low enough to bypass quick ESD events within the specified limits.

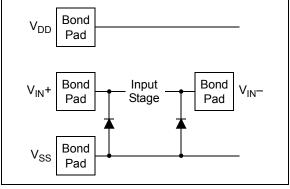
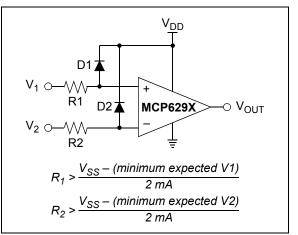



FIGURE 4-1: Simplified Analog Input ESD Structures.

In order to prevent damage and/or improper operation of these op amps, the circuit they are in must limit the currents and voltages at the V_{IN}+ and V_{IN}- pins (see **Absolute Maximum Ratings †** at the beginning of **Section 1.0 "Electrical Characteristics**"). Figure 4-2 shows the recommended approach to protecting these inputs. The internal ESD diodes prevent the input pins (V_{IN}+ and V_{IN}-) from going too far below ground, and the resistors R₁ and R₂ limit the possible current drawn out of the input pins. Diodes D₁ and D₂ prevent the input pins (V_{IN}+ and V_{IN}-) from going too far above

 $V_{DD}, \ and \ dump \ any \ currents \ onto \ V_{DD}.$ When implemented as shown, resistors R_1 and R_2 also limit the current through D_1 and $D_2.$

FIGURE 4-2: Protecting the Analog Inputs.

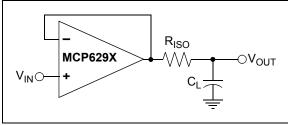
It is also possible to connect the diodes to the left of the resistor R₁ and R₂. In this case, the currents through the diodes D₁ and D₂ need to be limited by some other mechanism. The resistors then serve as in-rush current limiters; the DC current into the input pins (V_{IN}+ and V_{IN}-) should be very small.

A significant amount of current can flow out of the inputs when the Common-mode voltage (V_{CM}) is below ground (V_{SS}); see Figure 2-31. Applications that are high impedance may need to limit the usable voltage range.

4.1.3 NORMAL OPERATION

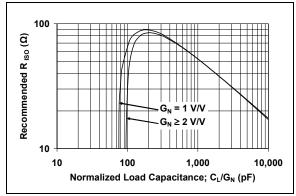
The input stage of the MCP6291/1R/2/3/4/5 op amps use two differential CMOS input stages in parallel. One operates at low Common-mode input voltage (V_{CM}), while the other operates at high V_{CM}. With this topology, the device operates with V_{CM} up to 0.3V past either supply rail. The input offset voltage (V_{OS}) is measured at V_{CM} = V_{SS} - 0.3V and V_{DD} + 0.3V to ensure proper operation.

The transition between the two input stages occurs when $V_{CM} = V_{DD} - 1.1V$. For the best distortion and gain linearity, with noninverting gains, avoid this region of operation.


4.2 Rail-to-Rail Output

The output voltage range of the MCP6291/1R/2/3/4/5 op amp is V_{DD} – 15 mV (min.) and V_{SS} + 15 mV (maximum) when R_L = 10 k Ω is connected to $V_{DD}/2$ and V_{DD} = 5.5V. Refer to Figure 2-16 for more information.

4.3 Capacitive Loads

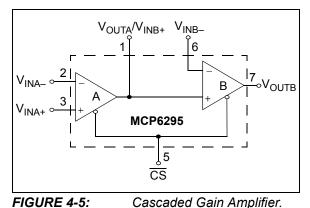

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity-gain buffer (G = +1) is the most sensitive to capacitive loads, though all gains show the same general behavior.

When driving large capacitive loads with these op amps (e.g., > 100 pF when G = +1), a small series resistor at the output (R_{ISO} in Figure 4-3) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The bandwidth will be generally lower than the bandwidth with no capacitive load.

FIGURE 4-3: Output Resistor, R_{ISO} Stabilizes Large Capacitive Loads.

Figure 4-4 gives recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N), where G_N is the circuit's noise gain. For noninverting gains, G_N and the Signal Gain are equal. For inverting gains, G_N is 1+|Signal Gain| (e.g., -1 V/V gives $G_N = +2$ V/V).

FIGURE 4-4: Recommended R_{ISO} Values for Capacitive Loads.


After selecting R_{ISO} for your circuit, double-check the resulting frequency response peaking and step response overshoot. Modify R_{ISO} 's value until the response is reasonable. Bench evaluation and simulations with the MCP6291/1R/2/3/4/5 SPICE macro model are helpful.

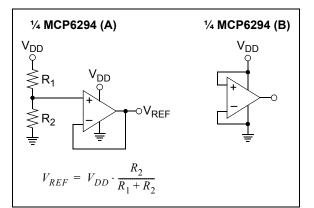
4.4 MCP629X Chip Select

The MCP6293 and MCP6295 are single and dual op amps with Chip Select (\overline{CS}), respectively. When \overline{CS} is pulled high, the supply current drops to 0.7 µA (typical) and flows through the \overline{CS} pin to V_{SS}. When this happens, the amplifier output is put into a high-impedance state. By pulling \overline{CS} low, the amplifier is enabled. The \overline{CS} pin has an internal 5 M Ω (typical) pull-down resistor connected to V_{SS}, so it will go low if the \overline{CS} pin is left floating. Figure 1-1 shows the output voltage and supply current response to a \overline{CS} pulse.

4.5 Cascaded Dual Op Amps (MCP6295)

The MCP6295 is a dual op amp with Chip Select (\overline{CS}). The Chip Select input is available on what would be the noninverting input of a standard dual op amp (pin 5). This is available because the output of op amp A connects to the noninverting input of op amp B, as shown in Figure 4-5. The Chip Select input, which can be connected to a microcontroller I/O line, puts the device in Low-power mode. Refer to Section 4.4 "MCP629X Chip Select".

The output of op amp A is loaded by the input impedance of op amp B, which is typically $10^{13}\Omega||6$ pF, as specified in the DC specification table (Refer to **Section 4.3 "Capacitive Loads**" for further details regarding capacitive loads).

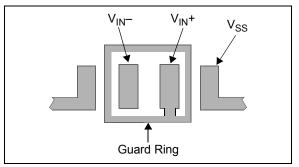

The Common-mode input range of these op amps is specified in the data sheet as $V_{SS} - 300 \text{ mV}$ and $V_{DD} + 300 \text{ mV}$. However, since the output of op amp A is limited to V_{OL} and V_{OH} (20 mV from the rails with a 10 k Ω load), the noninverting input range of op amp B is limited to the Common-mode input range of V_{SS} + 20 mV and V_{DD} – 20 mV.

4.6 Supply Bypass

With this family of operational amplifiers, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good high-frequency performance. It also needs a bulk capacitor (i.e., 1 µF or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with nearby analog parts.

4.7 Unused Op Amps

An unused op amp in a quad package (MCP6294) should be configured as shown in Figure 4-6. These circuits prevent the output from toggling and causing crosstalk. Circuits A sets the op amp at its minimum noise gain. The resistor divider produces any desired reference voltage within the output voltage range of the op amp; the op amp buffers that reference voltage. Circuit B uses the minimum number of components and operates as a comparator, but it may draw more current.



4.8 PCB Surface Leakage

In applications where low input bias current is critical, Printed Circuit Board (PCB) surface-leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA of current to flow, which is greater than the MCP6291/1R/2/3/4/5 family's bias current at 25°C (1 pA, typical).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-7.

FIGURE 4-7: Example Guard Ring Layout for Inverting Gain.

- 1. For Inverting Gain and Transimpedance Amplifiers (convert current to voltage, such as photo detectors):
 - a.Connect the guard ring to the noninverting input pin (V_{IN} +). This biases the guard ring to the same reference voltage as the op amp (e.g., V_{DD} /2 or ground).
 - b.Connect the inverting pin (V_{IN}-) to the input with a wire that does not touch the PCB surface.
- 2. Noninverting Gain and Unity-Gain Buffer:
 - a.Connect the noninverting pin (V_{IN} +) to the input with a wire that does not touch the PCB surface.
 - b.Connect the guard ring to the inverting input pin (V_{IN} -). This biases the guard ring to the Common-mode input voltage.

4.9 Application Circuits

4.9.1 MULTIPLE FEEDBACK LOW-PASS FILTER

The MCP6291/1R/2/3/4/5 op amp can be used in active-filter applications. Figure 4-8 shows an inverting, third-order, multiple feedback low-pass filter that can be used as an anti-aliasing filter.

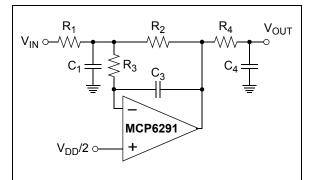


FIGURE 4-8: Multiple Feedback Low-Pass Filter.

This filter, and others, can be designed using Microchip's Filter design software (refer to **Section 5.0 "Design Aids"**).

4.9.2 PHOTODIODE AMPLIFIER

Figure 4-9 shows a photodiode biased in the photovoltaic mode for high precision. The resistor R converts the diode current I_D to the voltage V_{OUT} . The capacitor is used to limit the bandwidth or to stabilize the circuit against the diode's capacitance (it is not always needed).

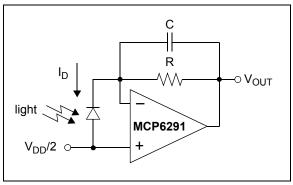


FIGURE 4-9:

Photodiode Amplifier.

4.9.3 CASCADED OP AMP APPLICATIONS

The MCP6295 provides the flexibility of Low-power mode for dual op amps in an 8-pin package. The MCP6295 eliminates the added cost and space in battery-powered applications by using two single op amps with Chip Select lines or a 10-pin device with one Chip Select line for both op amps. Since the two op amps are internally cascaded, this device cannot be used in circuits that require active or passive elements between the two op amps. However, there are several applications where this op amp configuration with Chip Select line becomes suitable. The circuits below show possible applications for this device.

4.9.3.1 Load Isolation

With the cascaded op amp configuration, op amp B can be used to isolate the load from op amp A. In applications where op amp A is driving capacitive or low resistance loads in the feedback loop (such as an integrator circuit or filter circuit), the op amp may not have sufficient source current to drive the load. In this case, op amp B can be used as a buffer.

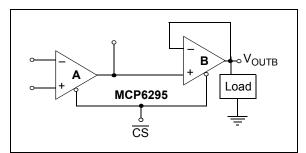


FIGURE 4-10: Isolating the Load with a Buffer.

4.9.3.2 Cascaded Gain

Figure 4-11 shows a cascaded gain circuit configuration with Chip Select. Op amps A and B are configured in a noninverting amplifier configuration. In this configuration, it is important to note that the input offset voltage of op amp A is amplified by the gain of op amp A and B, as shown below:

 $V_{OUT} = V_{IN}G_AG_B + V_{OSA}G_AG_B + V_{OSB}G_B$ Where: $G_A = op amp A gain$ $G_B = op amp B gain$ $V_{OSA} = op amp A input offset voltage$ $V_{OSB} = op amp B input offset voltage$

Therefore, it is recommended to set most of the gain with op amp A and use op amp B with relatively small gain (e.g., a unity-gain buffer).

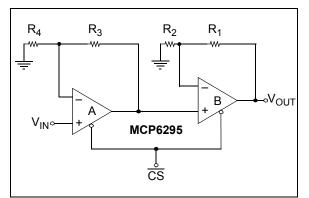


FIGURE 4-11: Cascaded Gain Circuit Configuration.

4.9.3.3 Difference Amplifier

Figure 4-12 shows op amp A as a difference amplifier with Chip Select. In this configuration, it is recommended to use well-matched resistors (e.g., 0.1%) to increase the Common-mode Rejection Ratio (CMRR). Op amp B can be used for additional gain or as a unity-gain buffer to isolate the load from the difference amplifier.

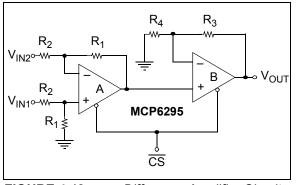


FIGURE 4-12: Difference Amplifier Circuit.

4.9.3.4 Buffered Noninverting Integrator

Figure 4-13 shows a lossy noninverting integrator that is buffered and has a Chip Select input. Op amp A is configured as a noninverting integrator. In this configuration, matching the impedance at each input is recommended. R_F is used to provide a feedback loop at frequencies << $1/(2\pi R_1 C_1)$ and makes this a lossy integrator (it has a finite gain at DC). Op amp B is used to isolate the load from the integrator.

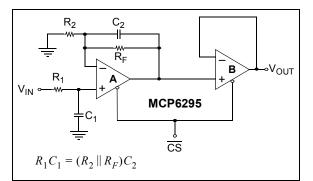


FIGURE 4-13: Buffered Noninverting Integrator with Chip Select.

4.9.3.5 Inverting Integrator with Active Compensation and Chip Select

Figure 4-14 uses an active compensator (op amp B) to compensate for the non-ideal op amp characteristics introduced at higher frequencies. This circuit uses op amp B as a unity-gain buffer to isolate the integration capacitor C_1 from op amp A and drives the capacitor with low-impedance source. Since both op amps are matched very well, they provide a high quality integrator.

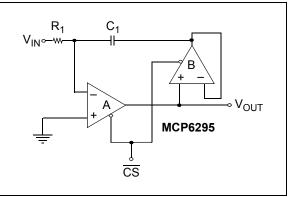
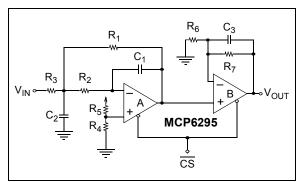



FIGURE 4-14: Compensation.

Integrator Circuit with Active

4.9.3.6 Second-Order MFB Low-Pass Filter with an Extra Pole-Zero Pair

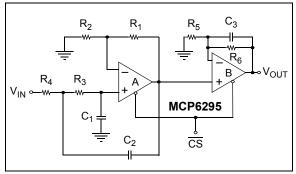

Figure 4-15 is a second-order multiple feedback lowpass filter with Chip Select. Use the FilterLab[®] software from Microchip to determine the R and C values for the op amp A's second-order filter. Op amp B can be used to add a pole-zero pair using C_3 , R_6 and R_7 .

FIGURE 4-15: Second-Order Multiple Feedback Low-Pass Filter with an Extra Pole-Zero Pair.

4.9.3.7 Second-Order Sallen-Key Low-Pass Filter with an Extra Pole-Zero Pair

Figure 4-16 is a second-order, Sallen-Key low-pass filter with Chip Select. Use the FilterLab[®] software from Microchip to determine the R and C values for the op amp A's second-order filter. Op amp B can be used to add a pole-zero pair using C_3 , R_5 and R_6 .

FIGURE 4-16: Second-Order Sallen-Key Low-Pass Filter with an Extra Pole-Zero Pair and Chip Select.

4.9.3.8 Capacitorless Second-Order Low-Pass filter with Chip Select

The low-pass filter shown in Figure 4-17 does not require external capacitors and uses only three external resistors; the op amp's GBWP sets the corner frequency. R_1 and R_2 are used to set the circuit gain and R_3 is used to set the Q. To avoid gain peaking in the frequency response, Q needs to be low (lower values need to be selected for R_3). Note that the amplifier bandwidth varies greatly over temperature and process. However, this configuration provides a low cost solution for applications with high bandwidth requirements.

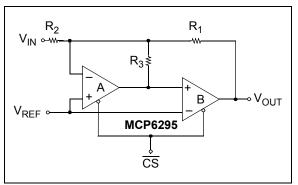


FIGURE 4-17: Capacitorless Second-Order Low-Pass Filter with Chip Select.

5.0 DESIGN AIDS

Microchip provides the basic design tools needed for the MCP6291/1R/2/3/4/5 family of op amps.

5.1 SPICE Macro Model

The latest SPICE macro model for the MCP6291/1R/2/3/4/5 op amps is available on the Microchip web site at www.microchip.com. This model is intended to be an initial design tool that works well in the op amp's linear region of operation over the temperature range. See the model file for information on its capabilities.

Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

5.2 FilterLab[®] Software

Microchip's FilterLab[®] software is an innovative software tool that simplifies analog active filter (using op amps) design. Available at no cost from the Microchip web site at www.microchip.com/filterlab, the FilterLab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

5.3 Mindi[™] Simulator Tool

Microchip's Mindi[™] simulator tool aids in the design of various circuits useful for active filter, amplifier and power-management applications. It is a free online simulation tool available from the Microchip web site at www.microchip.com/mindi. This interactive simulator enables designers to quickly generate circuit diagrams, simulate circuits. Circuits developed using the Mindi simulation tool can be downloaded to a personal computer or workstation.

5.4 MAPS (Microchip Advanced Part Selector)

MAPS is a software tool that helps semiconductor professionals efficiently identify Microchip devices that fit a particular design requirement. Available at no cost Microchip from the web site at www.microchip.com/maps, the MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool you can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for Data sheets, Purchase, and Sampling of Microchip parts.

5.5 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help you achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit the Microchip web site at www.microchip.com/analog tools.

Two of our boards that are especially useful are:

- P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board
- P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evaluation Board

5.6 Application Notes

The following Microchip Application Notes are available on the Microchip web site at www.microchip. com/appnotes and are recommended as supplemental reference resources.

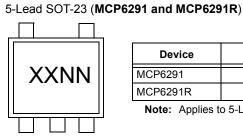
ADN003: "Select the Right Operational Amplifier for your Filtering Circuits," DS21821

AN722: "Operational Amplifier Topologies and DC Specifications," DS00722

AN723: "Operational Amplifier AC Specifications and Applications," DS00723

AN884: "Driving Capacitive Loads With Op Amps," DS00884

AN990: "Analog Sensor Conditioning Circuits – An Overview," DS00990


These application notes and others are listed in the design guide:

"Signal Chain Design Guide," DS21825

^{© 2003-2020} Microchip Technology Inc.

6.0 **PACKAGING INFORMATION**

6.1 **Package Marking Information**

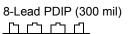
XXNN

Device	Code				
MCP6291	CJNN				
MCP6291R	EVNN				
Note: Applies to 5-Lead SOT-23					

Example: **CJ25**

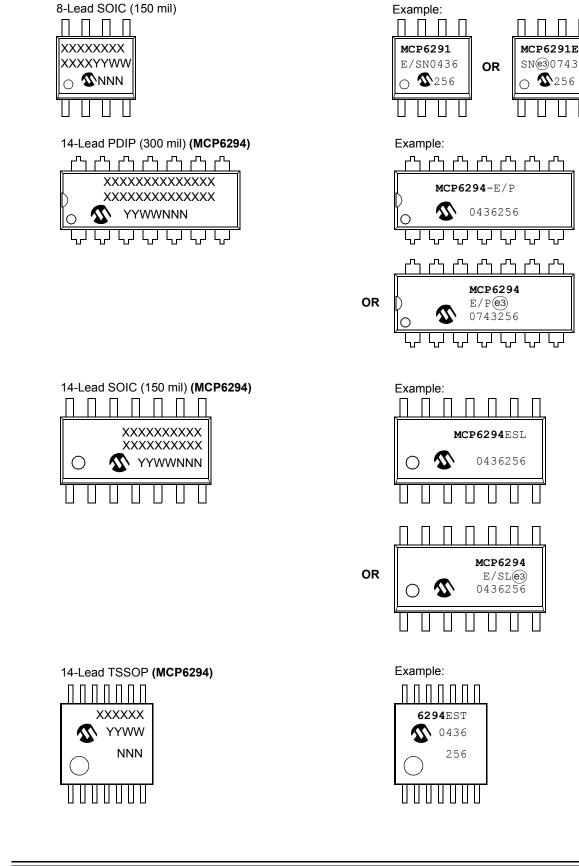
6-Lead SOT-23 (MCP6293)

Device	Code
MCP6293	CMNN
Note: Applies t	o 6-Lead SOT-23
···· pp ···	



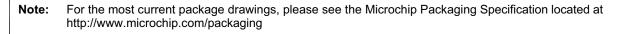
8-Lead MSOP

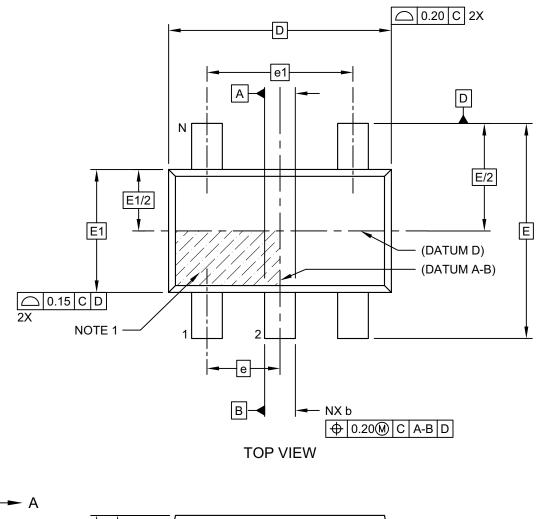
Example:

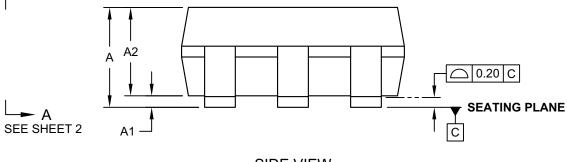


Example: <u> ר ר ר ר</u> MCP6291 E/P256 OR **M** 0436 \cap \cap

Legend:	XXX	Customer-specific information				
	Y	Year code (last digit of calendar year)				
	ΥY	Year code (last 2 digits of calendar year)				
	WW	Week code (week of January 1 is week '01')				
	NNN	Alphanumeric traceability code				
	e3	Pb-free JEDEC designator for Matte Tin (Sn)				
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)				
	can be found on the outer packaging for this package.					
Note:	: In the event the full Microchip part number cannot be marked on one line, it will					
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.					

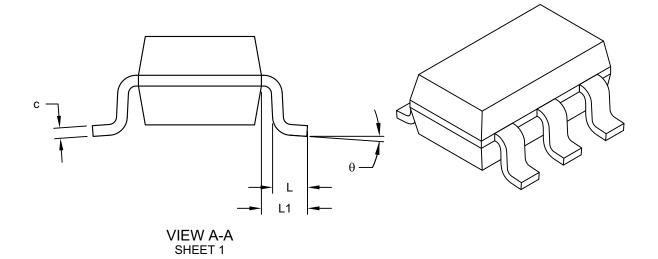



MCP6295-E/MS Microchip Technology IC OPAMP GP 2 CIRCUIT 8MSOP


MCP6291/1R/2/3/4/5

Package Marking Information (Continued)

5-Lead Plastic Small Outline Transistor (OT) [SOT23]



SIDE VIEW

Microchip Technology Drawing C04-091-OT Rev F Sheet 1 of 2

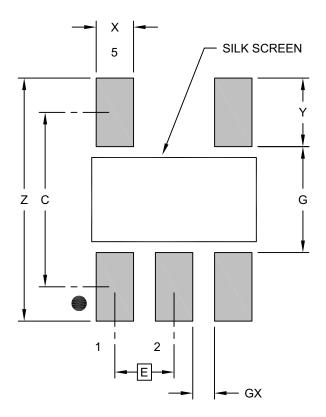
5-Lead Plastic Small Outline Transistor (OT) [SOT23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N		5		
Pitch	е		0.95 BSC		
Outside lead pitch	e1		1.90 BSC		
Overall Height	A	0.90	-	1.45	
Molded Package Thickness	A2	0.89 - 1.3			
Standoff	A1	0.15			
Overall Width	E	2.80 BSC			
Molded Package Width	E1	1.60 BSC			
Overall Length	D		2.90 BSC		
Foot Length	L	0.30	-	0.60	
Footprint	L1	0.60 REF			
Foot Angle	¢	0°	-	10°	
Lead Thickness	С	0.08 - 0.26			
Lead Width	b	0.20 - 0.51			

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.


2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

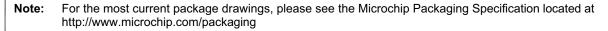
Microchip Technology Drawing C04-091-OT Rev F Sheet 2 of 2

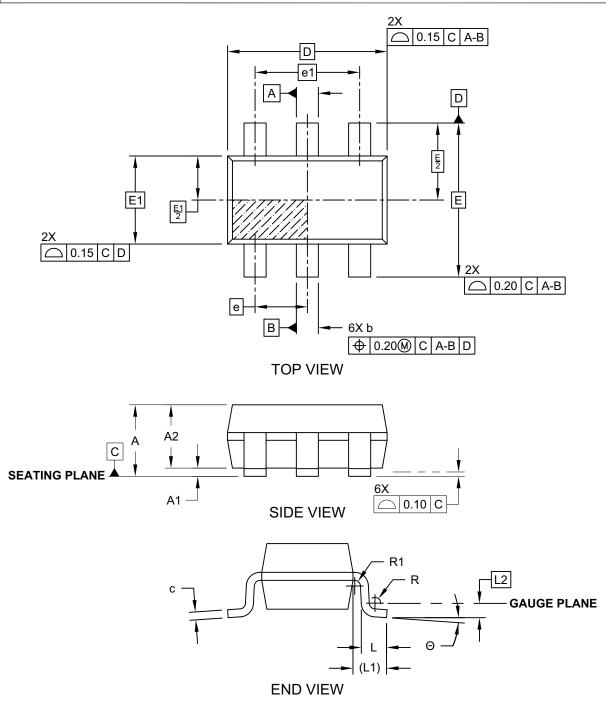
5-Lead Plastic Small Outline Transistor (OT) [SOT23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS				
Dimension Limits		MIN	NOM	MAX		
Contact Pitch	Contact Pitch E		0.95 BSC			
Contact Pad Spacing	С	2.80				
Contact Pad Width (X5) X				0.60		
Contact Pad Length (X5) Y				1.10		
Distance Between Pads	G	1.70				
Distance Between Pads	GX	0.35				
Overall Width Z				3.90		

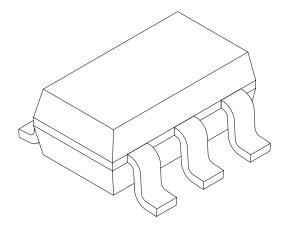

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091-OT Rev F

6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]



Microchip Technology Drawing C04-028C (CH) Sheet 1 of 2

6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]

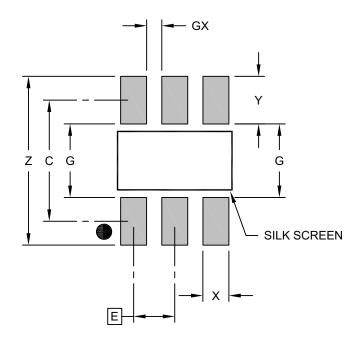
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units MILLIMETERS			S	
Dimension Limits		MIN	NOM	MAX	
Number of Leads	N		6		
Pitch	е		0.95 BSC		
Outside lead pitch	e1		1.90 BSC		
Overall Height	Α	0.90	-	1.45	
Molded Package Thickness	A2	0.89	1.15	1.30	
Standoff	A1	0.00	-	0.15	
Overall Width	E	2.80 BSC			
Molded Package Width	E1	1.60 BSC			
Overall Length	D	2.90 BSC			
Foot Length	L	0.30 0.45 0.60		0.60	
Footprint	L1	0.60 REF			
Seating Plane to Gauge Plane	L1	0.25 BSC			
Foot Angle	¢	0° - 10°			
Lead Thickness	С	0.08 - 0.26			
Lead Width	b	0.20 - 0.51			

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-028C (CH) Sheet 2 of 2

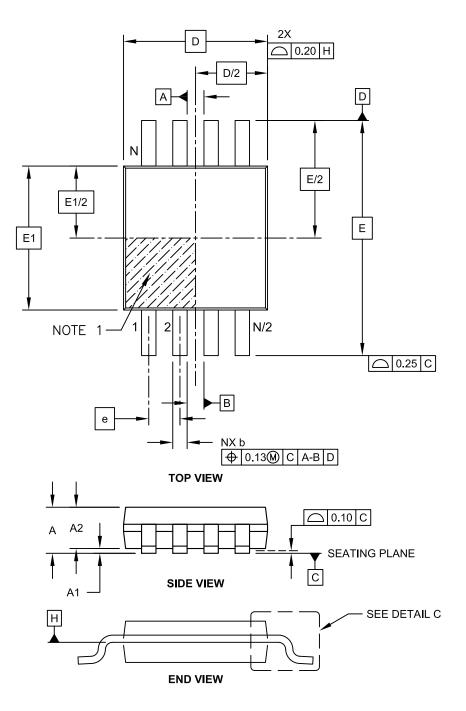
6-Lead Plastic Small Outline Transistor (CH, CHY) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX		
Contact Pitch	E	E 0.95 BSC				
Contact Pad Spacing	С	2.80				
Contact Pad Width (X3)	X	X		0.60		
Contact Pad Length (X3)	Contact Pad Length (X3) Y			1.10		
Distance Between Pads	G	1.70				
Distance Between Pads	GX	0.35				
Overall Width	Z			3.90		

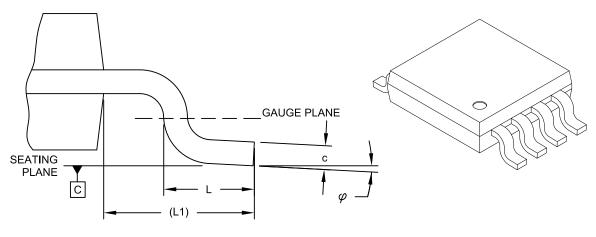
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2028B (CH)

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111C Sheet 1 of 2

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL C

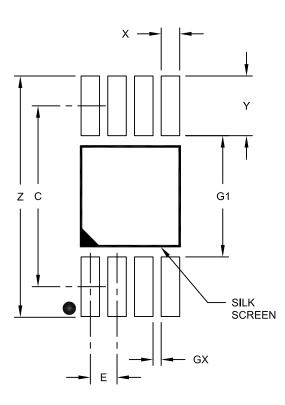
	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	8		
Pitch	е		0.65 BSC	
Overall Height	A	-	-	1.10
Molded Package Thickness	A2	0.75 0.85 0.95		
Standoff	A1	0.00	-	0.15
Overall Width	E	4.90 BSC		
Molded Package Width	E1	3.00 BSC		
Overall Length	D		3.00 BSC	
Foot Length	L	0.40	0.60	0.80
Footprint	L1	0.95 REF		
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.08 - 0.23		
Lead Width	b	0.22 - 0.40		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

 Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

protrusions shall not exceed 0.15mm per side. 3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2

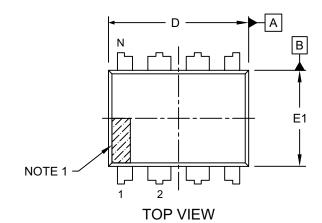
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

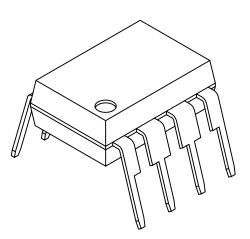
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

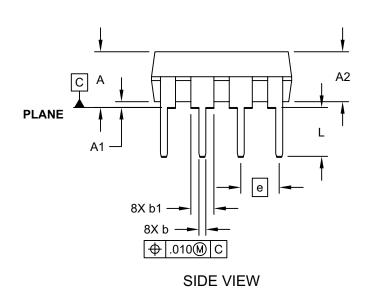
RECOMMENDED LAND PATTERN

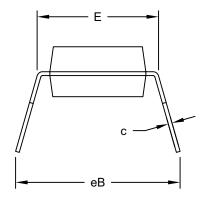
	Units		MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX		
Contact Pitch	E	0.65 BSC				
Contact Pad Spacing	С	4.40				
Overall Width	erall Width Z			5.85		
Contact Pad Width (X8) X1				0.45		
Contact Pad Length (X8) Y				1.45		
Distance Between Pads	G1	2.95				
Distance Between Pads GX		0.20				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

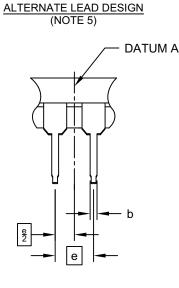

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2111A


8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging




END VIEW

Microchip Technology Drawing No. C04-018-P Rev E Sheet 1 of 2

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

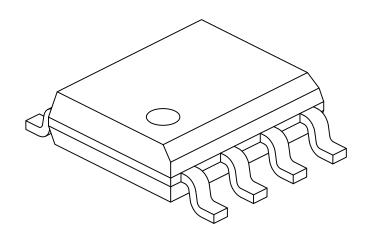
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


Units		INCHES			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		.100 BSC		
Top to Seating Plane	A	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.348	.365	.400	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eВ	-	-	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 5. Lead design above seating plane may vary, based on assembly vendor.

Microchip Technology Drawing No. C04-018-P Rev E Sheet 2 of 2


8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Microchip Technology Drawing No. C04-057-SN Rev F Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

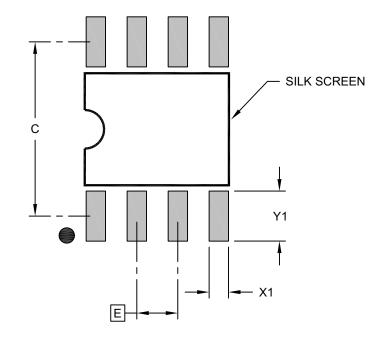
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		N	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		8		
Pitch	е		1.27 BSC		
Overall Height	А	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	4.90 BSC			
Chamfer (Optional)	h	0.25 - 0.50		0.50	
Foot Length	L	0.40 - 1.27		1.27	
Footprint	L1		1.04 REF		
Foot Angle	φ	0° - 8°		8°	
Lead Thickness	С	0.17 - 0.25		0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5° - 15°		15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic


3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev F Sheet 2 of 2

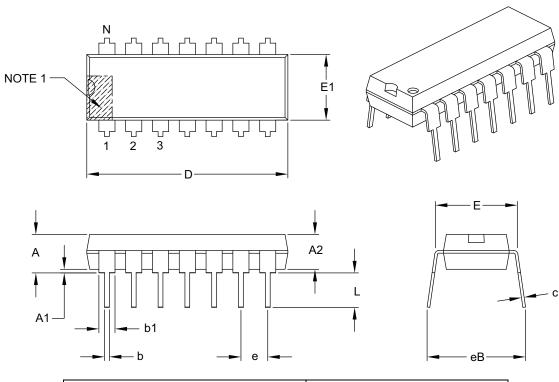
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS	
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev F

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

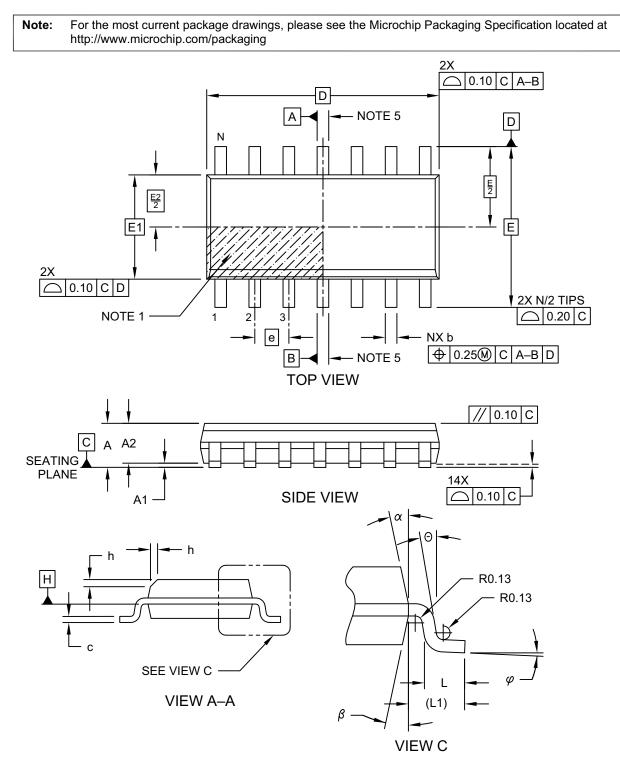
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensi	ion Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е		.100 BSC	
Top to Seating Plane	А	Ι	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

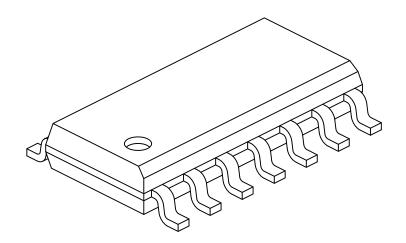
2. § Significant Characteristic.


3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B


14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 1 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

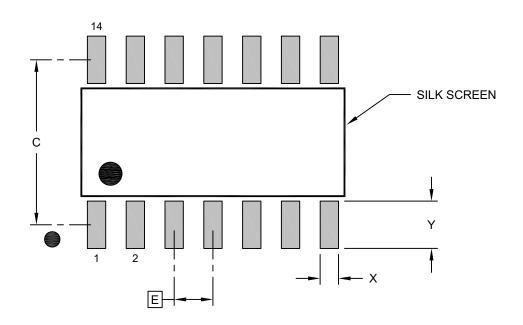
Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		14	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	8.65 BSC		
Chamfer (Optional)	h	0.25 - 0.50		0.50
Foot Length	L	0.40 - 1.27		1.27
Footprint	L1		1.04 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.10 - 0.25		0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5° - 15°		15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 2 of 2

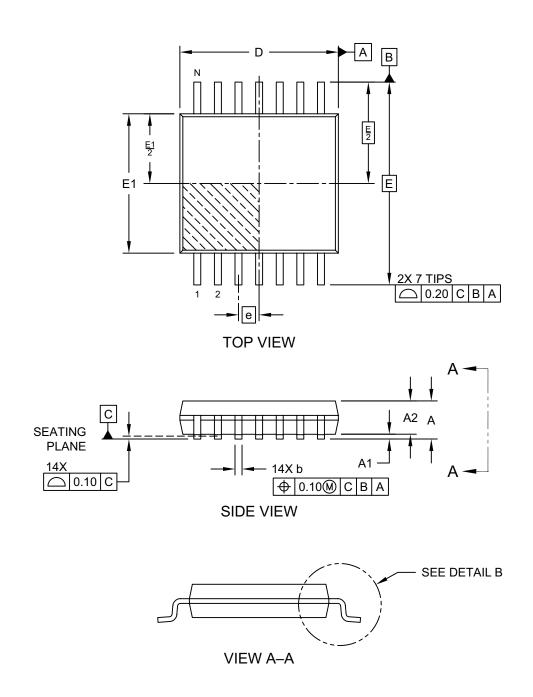
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		5.40		
Contact Pad Width (X14)	Х			0.60	
Contact Pad Length (X14)	Y			1.55	

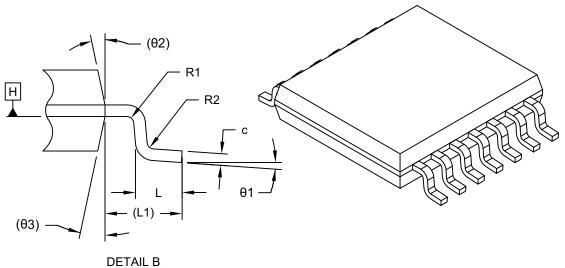
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065-SL Rev D

14Lead Thin Shrink Small Outline Package [ST] 4.4 mm Body [TSSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087 Rev D Sheet 1 of 2

14Lead Thin Shrink Small Outline Package [ST] 4.4 mm Body [TSSOP]

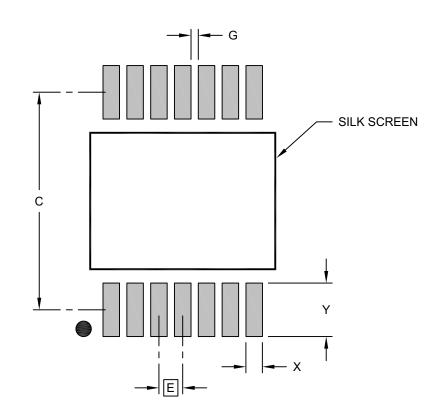
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

ᇆ	17	٩IL	в	

	Units		MILLIMETERS		
Di	imension Limits	MIN	NOM	MAX	
Number of Terminals	N		14		
Pitch	е		0.65 BSC		
Overall Height	А	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.80	1.00	1.05	
Overall Length	D	4.90	5.00	5.10	
Overall Width	E	6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Terminal Width	b	0.19	-	0.30	
Terminal Thickness	С	0.09	-	0.20	
Terminal Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Lead Bend Radius	R1	0.09	-	—	
Lead Bend Radius	R2	0.09	-	_	
Foot Angle	θ1	0°	-	8°	
Mold Draft Angle	θ2	_	12° REF	_	
Mold Draft Angle	θ3	_	12° REF	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087 Rev D Sheet 2 of 2

14Lead Thin Shrink Small Outline Package [ST] 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		5.90		
Contact Pad Width (Xnn)	Х	0.45		0.45	
Contact Pad Length (Xnn)	Y			1.45	
Contact Pad to Contact Pad (Xnn)	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2087 Rev D

APPENDIX A: REVISION HISTORY

Revision G (March 2020)

The following is the list of modifications:

- 1. Updated Features.
- 2. Updated Applications.
- 3. Updated **Description**.
- 4. Updated Section 1.0 "Electrical Characteristics".
- 5. Updated Temperature Specifications.
- 6. Updated Section 2.0 "Typical Performance Curves".
- 7. Updated Product Identification System.

Revision F (November 2019)

The following is the list of modifications:

1. Updated Section 6.0 "Packaging Information".

Revision E (November 2007)

The following is the list of modifications:

- 1. Updated notes to Section 1.0 "Electrical Characteristics". Increased absolute maximum voltage range of input pins. Increased maximum operating supply voltage (V_{DD}).
- 2. Added Test Circuits.
- 3. Added Figure 2-31 and Figure 2-32.
- 4. Added Section 4.1.1 "Phase Reversal", Section 4.1.2 "Input Voltage and Current Limits", and Section 4.1.3 "Normal Operation".
- 5. Added Section 4.7 "Unused Op Amps".
- 6. Updated Section 5.0 "Design Aids".
- 7. Corrected Package Markings.
- 8. Updated Package Outline Drawing.

Revision D (December 2004)

The following is the list of modifications:

- 1. Added SOT-23-5 packages for the MCP6291 and MCP6291R single op amps.
- 2. Added SOT-23-6 package for the MCP6293 single op amp.
- 3. Added Section 3.0 "Pin Descriptions".
- 4. Corrected application circuits (Section 4.9 "Application Circuits").
- Added SOT-23-5 and SOT-23-6 packages and corrected package marking information (Section 6.0 "Packaging Information").
- 6. Added Appendix A: Revision History.

Revision C (June 2004)

• Undocumented changes.

Revision B (October 2003)

• Undocumented changes.

Revision A (June 2003)

· Original data sheet release.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NO.</u>	– <u>x</u> / <u>xx</u>	Examples:
Device	 Temperature Package Range	a) MCP6291-E/SN: Extended Temperature, 8-Lead SOIC package
		b) MCP6291-E/MS: Extended Temperature, 8-Lead MSOP package
Device:	MCP6291: Single Op Amp MCP6291T: Single Op Amp	 c) MCP6291-E/P: Extended Temperature, 8-Lead PDIP package
	(Tape and Reel) (SOIC, MSOP, SOT-23-5) MCP6291RT: Single Op Amp	 MCP6291T-E/MS: Extended Temperature, 8 lead MSOP package, Tape and Reel
	(Tape and Reel) (SOT-23-5) MCP6292: Dual Op Amp MCP6292T: Dual Op Amp	 e) MCP6291T-E/SN: Extended Temperature, 8 lead SOIC package, Tape and Reel
	(Tape and Reel) (SOIC, MSOP) MCP6293: Single Op Amp with Chip Select	 f) MCP6291T-E/OT: Extended Temperature, 5 lead SOT-23 package, Tape and Reel
	MCP6293T: Single Op Amp with Chip Select (Tape and Reel) (SOIC, MSOP, SOT-23-6)	 g) MCP6291RT-E/OT: Extended Temperature, 5 lead SOT-23 package. Tape and Reel
	MCP6294: Quad Op Amp MCP6294T: Quad Op Amp (Tape and Reel) (SOIC, TSSOP)	a) MCP6292-E/SN: Extended Temperature, 8-Lead SOIC package
	MCP6295: Dual Op Amp with <u>Chip Select</u> MCP6295T: Dual Op Amp with <u>Chip Select</u>	 b) MCP6292-E/MS: Extended Temperature, 8-Lead MSOP package
Temperature	(Tape and Reel) (SOIC, MSOP) E = -40° C to +125°C	 c) MCP6292-E/P: Extended Temperature, 8-Lead PDIP package
Range:	$H = -40^{\circ} \text{ C to } +150^{\circ} \text{ C (MCP6292 only)}$	 MCP6292-H/MS: High Temperature, 8-Lead MSOP package
Package:	OT = Plastic Small Outline Transistor (SOT-23), 5-Lead (MCP6291, MCP6291R)	 e) MCP6292T-E/SN: Extended Temperature, 8-Lead SOIC package, Tape and Reel
	CH = Plastic Small Outline Transistor (SOT-23),6-Lead (MCP6293)	 f) MCP6292T-E/MS: Extended Temperature, 8-Lead MSOP package, Tape and Reel
	MS = Plastic MSOP, 8-Lead P = Plastic DIP (300 mil body), 8-Lead, 14-Lead SN = Plastic SOIC, (3.90 mm body), 8-Lead SL = Plastic SOIC (3.90 mm body), 14-Lead	 g) MCP6292T-H/MS: High Temperature, 8-Lead MSOP package, Tape and Reel
	ST = Plastic TSSOP (4.4 mm body), 14-Lead	a) MCP6293-E/SN: Extended Temperature, 8-Lead SOIC package
		 b) MCP6293T-E/MS: Extended Temperature, 8 lead MSOP package, Tape and Reel
		 c) MCP6293-E/P: Extended Temperature, 8-Lead PDIP package
		d) MCP6293T-E/CH: Extended Temperature, 6-Lead SOT-23 package, Tape and Reel
		a) MCP6294-E/P: Extended Temperature, 14-Lead PDIP package
		 b) MCP6294T-E/SL: Extended Temperature, 14-Lead SOIC package, Tape and Reel
		c) MCP6294-E/SL: Extended Temperature, 14-Lead SOIC package
		d) MCP6294-E/ST: Extended Temperature, 14-Lead TSSOP package
		a) MCP6295-E/SN: Extended Temperature, 8-Lead SOIC package
		b) MCP6295-E/MS: Extended Temperature, 8-Lead MSOP package
		c) MCP6295-E/P: Extended Temperature, 8-Lead PDIP package
		 d) MCP6295T-E/SN: Extended Temperature, 8-Lead SOIC package, Tape and Reel

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	– <u>x</u> / <u>xx</u>	Examples:
Device	Temperature Package Range	a) MCP6291T-E/OTVAO: Extended Temp., Automotive, 5-Lead SOT-23 package, Tape and Reel
Device:	MCP6291: Single Op Amp MCP6291T: Single Op Amp	a) MCP6292-E/SNVAO: Extended Temp., Automotive, 8-Lead SOIC package
	(Tape and Reel) (SOT-23-5) MCP6292: Dual Op Amp MCP6292T: Dual Op Amp (Tape and Reel) (SOIC, MSOP)	 b) MCP6292T-E/MSVAO: Extended Temp., Automotive, 8-Lead MSOP package, Tape and Reel
	MCP6294: Quad Op Amp MCP6294T: Quad Op Amp (Tape and Reel) (SOIC, TSSOP)	 c) MCP6292T-E/SNVAO: Extended Temp., Automotive, 8-Lead SOIC package, Tape and Reel
Temperature	$E = -40^{\circ} C \text{ to } +125^{\circ} C$	d) MCP6292-H/MSVAO: High Temp., Automotive, 8-Lead MSOP package
Range:	$H = -40^{\circ} \text{ C to } +150^{\circ} \text{ C}$	e) MCP6292T-H/MSVAO: High Temp., Automotive, 8-Lead MSOP package,
Package:	OTVAO = Plastic Small Outline Transistor (SOT-23), 5-lead, Automotive	Tape and Reel
	MSVAO = Plastic MSOP, 8-lead, Automotive SNVAO = Plastic SOIC, (3.90 mm body), 8-lead, Automotive SLVAO = Plastic SOIC (3.90 mm body), 14-lead, Automotive	a) MCP6294-E/SLVAO: Extended Temp., Automotive, 14-Lead SOIC package
	STVAO = Plastic TSSOP (4.4 mm body), 14-lead, Automotive	b) MCP6294-E/STVAO: Extended Temp., Automotive, 14-Lead TSSOP package
		c) MCP6294T-E/SLVAO: Extended Temp., Automotive 14-Lead SOIC package, Tape and Reel
		 d) MCP6294T-E/STVAO: Extended Temp., Automotive, 14-Lead TSSOP package, Tape and Reel

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2003-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5844-9

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.