

MIC5841YV Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number MIC5841YV-DG

Manufacturer Microchip Technology

Manufacturer Product Number MIC5841YV

Description IC PWR DRVR BIPOLAR 1:8 20PLCC

Detailed Description Power Switch/Driver 1:8 Bipolar 500mA 20-PLCC (9

x9)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
MIC5841YV	Microchip Technology
Series:	Product Status:
	Active
Switch Type:	Number of Outputs:
Latched Driver	8
Ratio - Input:Output:	Output Configuration:
1:8	Low Side
Output Type:	Interface:
Bipolar	Strobe, Serial
Voltage - Load:	Voltage - Supply (Vcc/Vdd):
15V (Max)	
Current - Output (Max):	Rds On (Typ):
500mA	
Input Type:	Features:
Non-Inverting	
Fault Protection:	Operating Temperature:
	-55°C ~ 85°C (TA)
Mounting Type:	Supplier Device Package:
Surface Mount	20-PLCC (9x9)
Package / Case:	Base Product Number:
20-LCC (J-Lead)	MIC5841

Environmental & Export classification

8542.39.0001

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	2 (1 Year)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

MIC5841/5842

8-Bit Serial-Input Latched Drivers

General Description

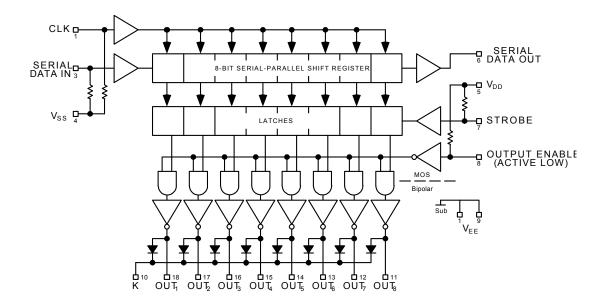
Using BiCMOS technology, the MIC5841/5842 integrated circuits were fabricated to be used in a wide variety of peripheral power driver applications. The devices each have an eight-bit CMOS shift register, CMOS control circuitry, eight CMOS data latches, and eight bipolar current-sink Darlington output drivers.

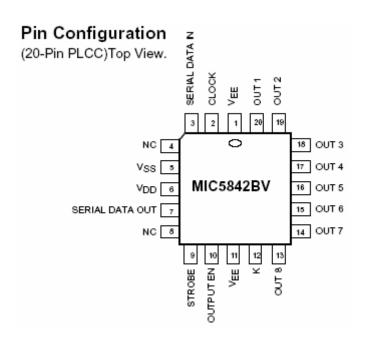
These two devices differ only in maximum voltage ratings. The MIC5842 offers premium performance with a minimum output breakdown voltage rating of 80V (50V sustaining). The drivers can be operated with a split supply where the negative supply is down to –20V.

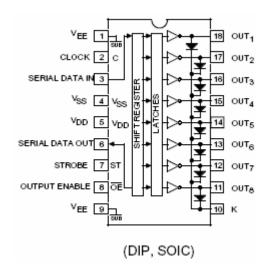
The 500mA outputs, with integral transient-suppression diodes, are suitable for use with lamps, relays, solenoids and other inductive loads.

These devices have improved speed characteristics. With a 5V logic supply, they will typically operate faster than 5 MHz. With a 12V supply, significantly higher speeds are obtained. The CMOS inputs are compatible with standard CMOS, PMOS, and NMOS logic levels. TTL or DTL circuits may require the use of appropriate pull-up resistors. By using the serial data output, the drivers can be cascaded for interface applications requiring additional drive lines.

The MIC5840 family is available in DIP, PLCC, and SOIC packages. Because of limitations on package power dissipation, the simultaneous operation of all drivers at maximum rated current might require a reduction in duty cycle. A copper-alloy lead frame provides for maximum package power dissipation.


Features


- 3.3 MHz Minimum Data-Input Rate
- CMOS, PMOS, NMOS, TTL Compatible
- Internal Pull-Up/Pull-Down Resistors
- Low-Power CMOS Logic and Latches
- High-Voltage Current-Sink Outputs
- Output Transient-Protection Diodes
- Single or Split Supply Operation


Ordering Information

Part N	umber	Temperature Range	Package		
Standard	Pb-Free	Temperature Name			
MIC5841BN	MIC5841YN	–40°C to +85°C	18-Pin Plastic DIP		
MIC5841BV	MIC5841YV	–40°C to +85°C	20-Pin PLCC		
MIC5841BWM	MIC5841YWM	–40°C to +85°C	18-Pin Wide SOIC		
MIC5842BN	MIC5842YN	–40°C to +85°C	18-Pin Plastic DIP		
MIC5842BV	MIC5842YV	–40°C to +85°C	20-Pin PLCC		
MIC5842BWM	MIC5842YWM	–40°C to +85°C	18-Pin Wide SOIC		

Functional Diagram

Absolute Maximum Ratings(1,2,3)

At 25°C Free-Air Temperature and V _{SS}	0V
Output Voltage, V _{CE} (MIC5841)	
(MIC5842)	80V
Output Voltage, V _{CE(SUS)} (MIC5841) ⁽¹⁾	35V
(MIC5842)	50V
Logic Supply Voltage, V _{DD}	15V
VDD with Reference to V _{EE}	25V

Emitter Supply Voltage, V_{EE}.....–20V Input Voltage Range, V_{IN} -0.3V to V_{DD} + 0.3V Continuous Output Current, I_{OUT}......500mA Package Power Dissipation, P_D⁽²⁾......1.82W Operating Temperature Range, T_A......-55°C to +85°C Storage Temperature Range, T_S-65°C to +150°C

Electrical Characteristics

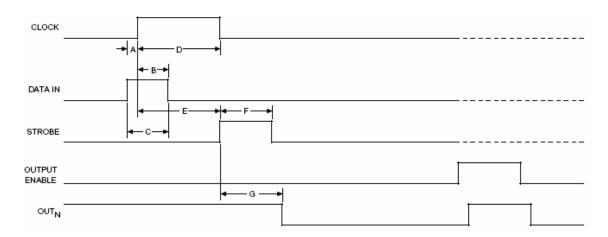
At $T_A = 25$ °C $V_{DD} = 5V$, $V_{SS} = V_{EE} = 0V$ (unless otherwise noted)

					Limits	
Characteristic	Symbol	Applicable Devices	Test Conditions	Min	Max	Unit
Output Leakage Current	I _{CEX}	MIC5841	V _{OUT} = 50V		50	μΑ
			V _{OUT} = 50V, T _A = +70°C		100	
		MIC5842	V _{OUT} = 80V		50	
			V _{OUT} = 80V, T _A = +70°C		100	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	Both	I _{OUT} = 100mA		1.1	V
			I _{OUT} = 200mA		1.3	
			$I_{OUT} = 350 \text{mA}, V_{DD} = 7.0 \text{V}$		1.6	
Collector-Emitter Saturation Voltage	V _{CE(SUS)} ⁽⁵⁾	MIC5841	I _{OUT} = 350mA, L = 2mH	35		V
		MIC5842	I _{OUT} = 350mA, L = 2mH	50		
Input Voltage	V _{IN(0)}	Both			0.8	V
	V _{IN(1)}	Both	V _{DD} = 12V	10.5		
			V _{DD} = 10V	8.5		
			$V_{DD} = 5.0V(4)$	3.5		
Input Resistance	R _{IN}	Both	V _{DD} = 12V	50		kΩ
			V _{DD} = 10V	50		
			$V_{DD} = 5.0V$	50		
Supply Current	IDD _(ON)	Both	All Drivers ON, V _{DD} = 12V		16	1.6
			All Drivers ON, V _{DD} = 10V		14	
			All Drivers ON, V _{DD} = 5.0V		8.0	
	IDD _(OFF)	Both	All Drivers OFF, V _{DD} = 12V		2.9	
			All Drivers OFF, V _{DD} = 10V		2.5	
			All Drivers OFF, V _{DD} = 5.0V		1.6	
Clamp Diode Leakage Current	I _R	MIC5841	V _R = 50V		50	μA
		MIC5842	V _R = 80V		50	
Clamp Diode Forward Voltage	V _F	Both	I _F = 350mA		2.0	V

Electrical Characteristics

At $T_A = -55$ °C $V_{DD} = 5V$, $V_{SS} = V_{EE} = 0V$ (unless otherwise noted)

·			Limits			
Characteristic	Symbol	Test Conditions	Min	Max	Unit	
Output Leakage Current	I _{CEX}	V _{OUT} = 80V		50	μA	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _{OUT} = 100mA		1.3	V	
		I _{OUT} = 200mA		1.5		
		$I_{OUT} = 350 \text{mA}, V_{DD} = 7.0 \text{V}$		1.8		
Input Voltage	V _{IN(0)}			0.8	V	
	V _{IN(1)}	V _{DD} = 12V	10.5			
		V _{DD} = 5.0V	3.5			
Input Resistance	R _{IN}	V _{DD} = 12V	35		kΩ	
		V _{DD} = 10V	35			
		V _{DD} = 5.0V	35			
Supply Current	I _{DD(ON)}	All Drivers ON, V _{DD} = 12V		16	mA	
		All Drivers ON, V _{DD} = 10V		14		
		All Drivers ON, V _{DD} = 5.0V		10		
	I _{DD(OFF)}	All Drivers OFF, V _{DD} = 12V		3.5		
		All Drivers OFF, V _{DD} = 5.0V		2.0		


Electrical Characteristics

At $T_A = +125$ °C $V_{DD} = 5V$, $V_{SS} = V_{EE} = 0V$ (unless otherwise noted)

				Limits				
Characteristic	Symbol	Test Conditions	Min	Max	Unit			
Output Leakage Current	I _{CEX}	V _{OUT} = 80V		500	μA			
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _{OUT} = 100mA		1.3	V			
		I _{OUT} = 200mA		1.5				
		$I_{OUT} = 350 \text{mA}, V_{DD} = 7.0 \text{V}$		1.8				
Input Voltage	$V_{IN(0)}$			0.8	V			
	$V_{IN(1)}$	V _{DD} = 12V	10.5					
		V _{DD} = 5.0V	3.5					
Input Resistance	R _{IN}	V _{DD} = 12V	50		kΩ			
		V _{DD} = 10V	50					
		V _{DD} = 5.0V	50					
Supply Current	I _{DD(ON)}	All Drivers ON, V _{DD} = 12V		16	mA			
		All Drivers ON, V _{DD} = 10V		14				
		All Drivers ON, V _{DD} = 5.0V		8				
	I _{DD(OFF)}	All Drivers OFF, V _{DD} = 12V		2.9				
		All Drivers OFF, V _{DD} = 5.0V		2.1.6				
Clamp Diode Leakage Current	I _R	MIC5841A V _R = 50V		1.6	μΑ			
		MIC5842A V _R = 80V		100				

Notes:

- 1. For Inductive load applications.
- 2. Derate at the rate of 18.2mW/°C above TA = 25°C (Plastic DIP)
- 3. CMOS devices have input-static protection but are susceptible to damage when exposed to extremely high static electrical charges.
- 4. Operation of these devices with standard TTL may require the use of appropriate pull-up resistors to insure an input logic HIGH.
- 5. Not 100% tested. Guaranteed by design.

Timing Conditions

(TA = 25°C Logic Levels are V_{DD} and V_{SS})	$V_{DD} = 5V$
A. Minimum Data Active Time Before Clock Pulse (Data Set-Up Time)	75 ns
B. Minimum Data Active Time After Clock Pulse (Data Hold Time)	75 ns
C. Minimum Data Pulse Width	150 ns
D. Minimum Clock Pulse Width	150 ns
E. Minimum Time Between Clock Activation and Strobe	300 ns
F. Minimum Strobe Pulse Width	100 ns
G. Typical Time Between Strobe Activation and Output Transition	500 ns

SERIAL DATA present at the input is transferred to the shift register on the logic "0" to logic "1" transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.

Information present at any register is transferred to its respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the ENABLE input be high during serial data entry.

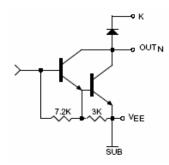
When the ENABLE input is high, all of the output buffers are disabled (OFF) without affecting information stored in the latches or shift register. With the ENABLE input low, the outputs are controlled by the state of the latches.

MIC5840 Family Truth Table

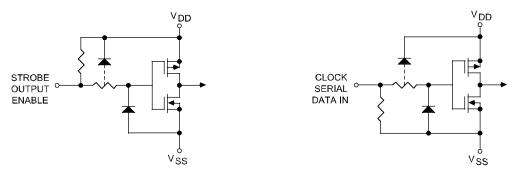
Serial	Clock	Shift Register Contents						Strope	Latch Contents Output Output Contents				Latch Contents Output Output					s
Data Input	Input	I ₁	l ₂	l ₃	 I ₈	Data Output	Input	I ₁	l ₂	l ₃		l ₈	Enable	I ₁	l ₂	l ₃	:	l ₈
Н		Н	R1	R2	 R7	R7												
L		L	R1	R2	 R7	R7												
Х		R1	R2	R3	 R8	R8												
		Х	Х	Х	 Х	Х	L	R1	R2	R3		R8						
		P1	P2	P3	 P8	P8	Н	P1	P2	P3		P8	L	P1	P2	P3		P8
								Χ	Χ	Х		Х	Н	Н	Н	Η		Н

L = Low Logic Level

H = High Logic Level


X = Irrelevant

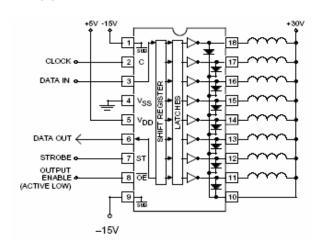
P = Present State

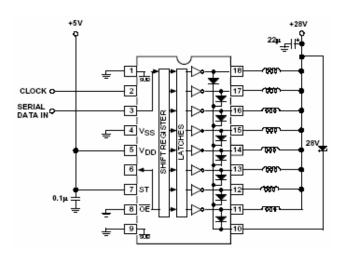

R = Previous State

MIC5841/42 Micrel, Inc.

Typical Output Driver

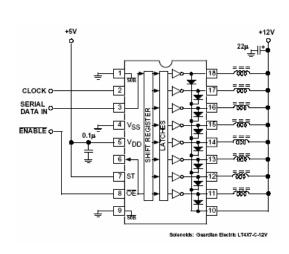
Typical Input Circuits

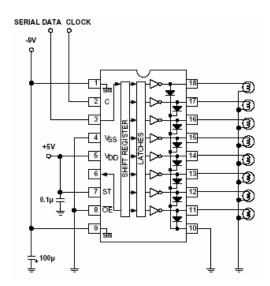

Maximum Allowable Duty Cycle (Plastic DIP) $V_{DD} = 5.0V$


Number of Outputs ON (I _{OUT} = 200mA	Max. Allowable Duty Cycle at Ambient Temperature of								
$V_{DD} = 5.0V$)	25°C	40°C	50°C	60°C	70°C				
8	85%	72%	64%	55%	46%				
7	97%	82%	73%	63%	53%				
6	100%	96%	85%	73%	62%				
5	100%	100%	100%	88%	75%				
4	100%	100%	100%	100%	93%				
3	100%	100%	100%	100%	100%				
2	100%	100%	100%	100%	100%				
1	100%	100%	100%	100%	100%				

 $V_{DD} = 12V$

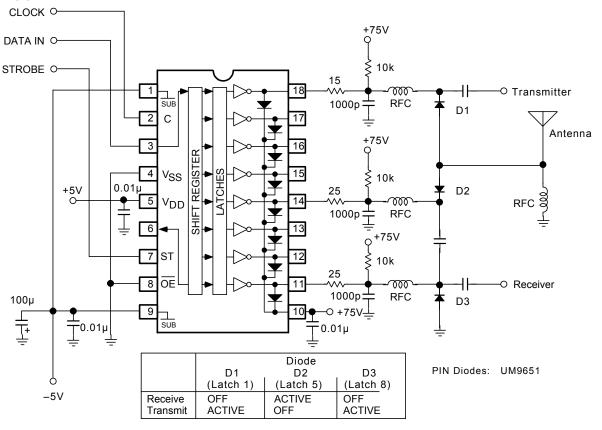
Number of Outputs ON (I _{OUT} = 200mA		Max. Allowable I	Duty Cycle at Ambier	nt Temperature of	
V _{DD} = 12V)	25°C	40°C	50°C	60°C	70°C
8	80%	68%	60%	52%	44%
7	91%	77%	68%	59%	50%
6	100%	90%	79%	69%	58%
5	100%	100%	95%	82%	69%
4	100%	100%	100%	100%	86%
3	100%	100%	100%	100%	100%
2	100%	100%	100%	100%	100%
1	100%	100%	100%	100%	100%


Typical Applications



Relay/Solenoid Driver MIC5842

MIC5841 Hammer Driver



MIC5841 Solenoid Driver with Output Enable

MIC5841 Level Shifting Lamp Driver with **Darlington Emitters Tied to a Negative Supply**

Typical Applications, Continued

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 1998 Micrel, Incorporated.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com