

2N3906RL1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number 2N39

2N3906RL1G-DG

Manufacturer

onsemi

Manufacturer Product Number

2N3906RL1G

Description

TRANS PNP 40V 0.2A TO92

Detailed Description

Bipolar (BJT) Transistor PNP 40 V 200 mA 250MHz 6

25 mW Through Hole TO-92 (TO-226)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
2N3906RL1G	onsemi
Series:	Product Status:
	Obsolete
Transistor Type:	Current - Collector (Ic) (Max):
PNP	200 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
40 V	400mV @ 5mA, 50mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
	100 @ 10mA, 1V
Power - Max:	Frequency - Transition:
625 mW	250MHz
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-226-3, TO-92-3 Long Body (Formed Leads)	TO-92 (TO-226)
Base Product Number:	
2N3906	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8541.21.0075

General Purpose Transistors

PNP Silicon

Features

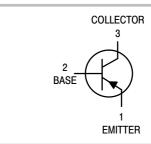
• Pb-Free Packages are Available*

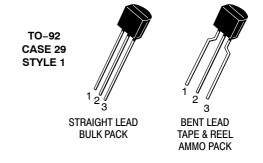
MAXIMUM RATINGS

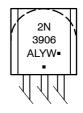
Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	40	Vdc
Emitter – Base Voltage	V _{EBO}	5.0	Vdc
Collector Current - Continuous	Ic	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Power Dissipation @ T _A = 60°C	P _D	250	mW
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Indicates Data in addition to JEDEC Requirements.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

A = Assembly Location

= Wafer Lot

Y = Year

W = Work Week

= Pb-Free Package

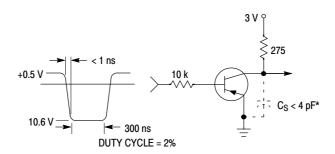
(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

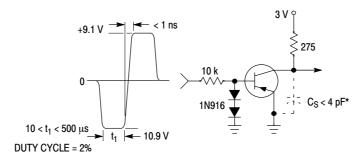
^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


	Cha	Symbol	Min	Max	Unit	
OFF CHARACTERIS	TICS					
Collector - Emitter Bre	akdown Voltage (V _{(BR)CEO}	40	-	Vdc	
Collector - Base Break	kdown Voltage	$(I_{C} = 10 \mu Adc, I_{E} = 0)$	V _{(BR)CBO}	40	-	Vdc
Emitter – Base Breakd	lown Voltage	$(I_E = 10 \mu Adc, I_C = 0)$	V _{(BR)EBO}	5.0	-	Vdc
Base Cutoff Current		(V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{BL}	-	50	nAdc
Collector Cutoff Curre	nt	(V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)	I _{CEX}	-	50	nAdc
ON CHARACTERIST	ICS (Note 2)			•	•	
DC Current Gain		$ \begin{array}{l} (I_{C}=0.1 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=1.0 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=10 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=50 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=100 \text{ mAdc, V}_{CE}=1.0 \text{ Vdc}) \end{array} $	h _{FE}	60 80 100 60 30	- 300 - -	-
Collector – Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.$ $(I_C = 50 \text{ mAdc}, I_B = 5.$			V _{CE(sat)}	_ _	0.25 0.4	Vdc
Base – Emitter Saturation Voltage $ \begin{array}{c} (I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}) \\ (I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}) \end{array} $			V _{BE(sat)}	0.65 -	0.85 0.95	Vdc
SMALL-SIGNAL CH	ARACTERISTICS	3				
Current-Gain - Band	width Product	$(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	250	-	MHz
Output Capacitance		$(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	-	4.5	pF
Input Capacitance		$(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{ibo}	-	10	pF
Input Impedance		(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		2.0	12	kΩ
Voltage Feedback Ra	tio	$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{re}	0.1	10	X 10 ⁻⁴
Small-Signal Current	Gain	$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	100	400	-
Output Admittance		$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{oe}	3.0	60	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz)			NF	-	4.0	dB
SWITCHING CHARA	CTERISTICS					
Delay Time	(V _{CC} = 3.0 Vdc	V _{BE} = 0.5 Vdc,	t _d	-	35	ns
Rise Time	$I_C = 10 \text{ mAdc, I}$		t _r	-	35	ns
Storage Time	(V _{CC} = 3.0 Vdc	$I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	ts	-	225	ns
Fall Time	(V _{CC} = 3.0 Vdc	$I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	t _f	-	75	ns

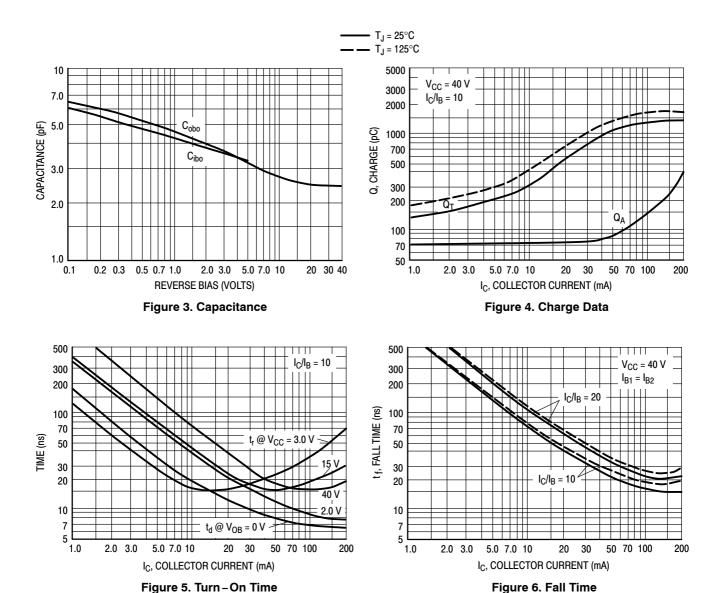
^{2.} Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2%.

ORDERING INFORMATION

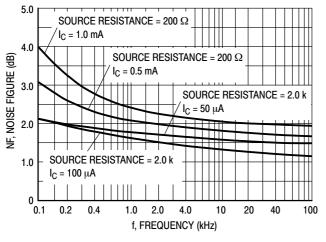

Device	Package	Shipping [†]
2N3906	TO-92	5000 Units / Bulk
2N3906G	TO-92 (Pb-Free)	5000 Units / Bulk
2N3906RL1	TO-92	2000 / Tape & Reel
2N3906RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3906RLRA	TO-92	2000 / Tape & Reel
2N3906RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3906RLRM	TO-92	2000 / Tape & Ammo Box
2N3906RLRMG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box
2N3906RLRP	TO-92	2000 / Tape & Ammo Box
2N3906RLRPG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*} Total shunt capacitance of test jig and connectors


Figure 1. Delay and Rise Time Equivalent Test Circuit

^{*} Total shunt capacitance of test jig and connectors


Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS **NOISE FIGURE VARIATIONS**

($V_{CE} = -5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$, Bandwidth = 1.0 Hz)

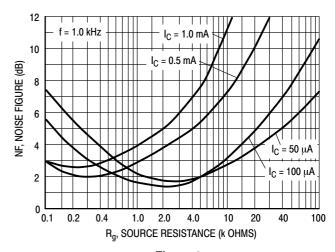
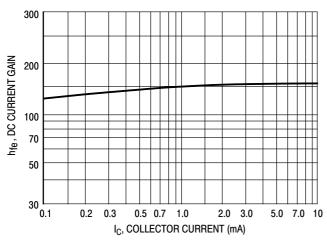



Figure 7.

Figure 8.

h PARAMETERS

($V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$)

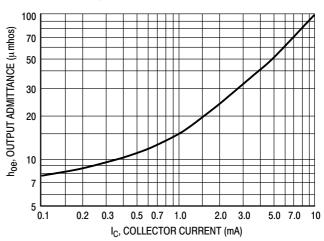


Figure 9. Current Gain

Figure 10. Output Admittance

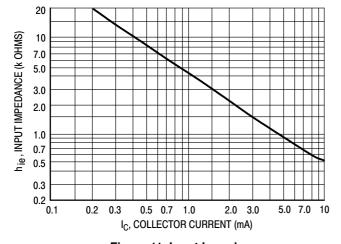


Figure 11. Input Impedance

Figure 12. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

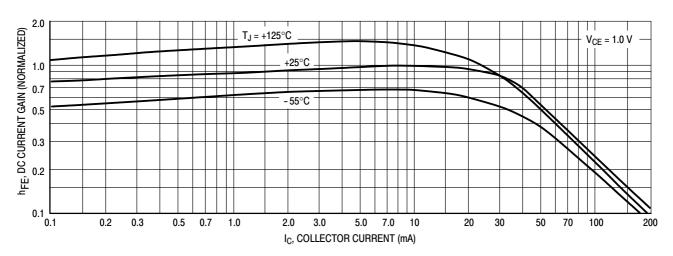


Figure 13. DC Current Gain

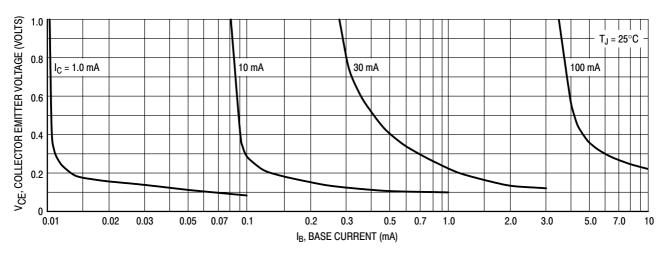


Figure 14. Collector Saturation Region

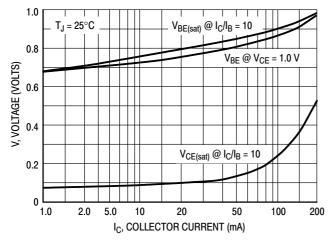


Figure 15. "ON" Voltages

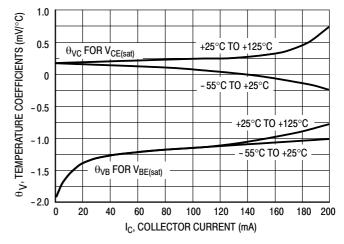
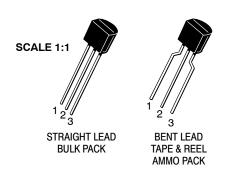
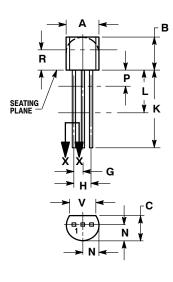



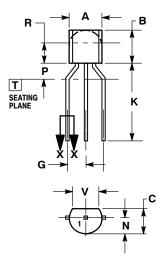
Figure 16. Temperature Coefficients


MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095 0.105		2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER

- AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS					
DIM	MIN	MAX				
Α	4.45	5.20				
В	4.32	5.33				
С	3.18	4.19				
D	0.40	0.54				
G	2.40	2.80				
J	0.39	0.50				
K	12.70					
N	2.04	2.66				
P	1.50	4.00				
R	2.93					
٧	3.43					

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15GTI in are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the Office States and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) CASE 29-11 ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE		
STYLE 6: PIN 1. 2. 3.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	CATHODE GATE ANODE
2. 3.	CATHODE & ANODE CATHODE	2. 3.	GATE MAIN TERMINAL 2	2. 3.		2. 3.	COLLECTOR BASE	2. 3.	CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
2.	COLLECTOR EMITTER BASE	STYLE 22: PIN 1. 2. 3.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	EMITTER COLLECTOR/ANODE CATHODE	STYLE 25: PIN 1. 2. 3.	MT 1 GATE MT 2
2. 3.	V _{CC} GROUND 2 OUTPUT	2. 3.	SUBSTRATE MT	2. 3.	GATE	PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	PIN 1. 2. 3.	DRAIN GATE SOURCE
STYLE 31: PIN 1. 2. 3.	GATE DRAIN SOURCE	STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN INPUT OUTPUT	STYLE 34: PIN 1. 2. 3.	INPUT GROUND LOGIC	STYLE 35: PIN 1. 2. 3.	GATE COLLECTOR EMITTER

DOCUMENT NUMBER:	98ASB42022B	98ASB42022B Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CO			
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com