

2N5655 Datasheet

	Sandar State Contraction of the second second
DiGi Electronics Part Number	2N5655-DG
Manufacturer	onsemi
Manufacturer Product Number	2N5655
Description	TRANS NPN 250V 0.5A TO126
Detailed Description	Bipolar (BJT) Transistor NPN 250 V 500 mA 10MHz 2 0 W Through Hole TO-126

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
2N5655	onsemi
Series:	Product Status:
	Obsolete
Transistor Type:	Current - Collector (Ic) (Max):
NPN	500 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
250 V	10V @ 100mA, 500mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ lc, Vce:
100µA	30 @ 100mA, 10mV
Power - Max:	Frequency - Transition:
20 W	10MHz
Operating Temperature:	Mounting Type:
-65°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-225AA, TO-126-3	TO-126
Base Product Number:	
2N5655	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
RoHS non-compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

2N5655G, 2N5657G

Plastic NPN Silicon High-Voltage Power Transistors

These devices are designed for use in line–operated equipment such as audio output amplifiers; low–current, high–voltage converters; and AC line relays.

Features

- Excellent DC Current Gain
- High Current–Gain Bandwidth Product
- These Devices are Pb-Free and are RoHS Compliant*

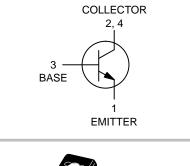
MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Collector–Emitter Voltage 2N5655G 2N5657G	V _{CEO}	250 350	Vdc
Collector–Base Voltage 2N5655G 2N5657G	V _{CB}	275 375	Vdc
Emitter-Base Voltage	V _{EB}	6.0	Vdc
Collector Current – Continuous	Ι _C	0.5	Adc
Collector Current – Peak	I _{CM}	1.0	Adc
Base Current	I _B	1.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	20 0.16	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C/W

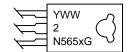
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

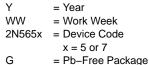
1. Indicates JEDEC registered data.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	R_{\thetaJC}	6.25	°C/W

ON Semiconductor®


http://onsemi.com


0.5 AMPERE POWER TRANSISTORS NPN SILICON 250–350 VOLTS, 20 WATTS

MARKING DIAGRAM

ORDERING INFORMATION

De	vice	Package	Shipping
2N56	55G	TO–225 (Pb–Free)	500 Units / Bulk
2N56	57G	TO-225 (Pb-Free)	500 Units / Bulk

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

2N5655G, 2N5657G

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted) (Note 2)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Sustaining Voltage (I _C = 100 mAdc (inductive), L = 50 mH) 2N5655G 2N5657G	V _{CEO(sus)}	250 350		Vdc
Collector–Emitter Breakdown Voltage $(I_C = 1.0 \text{ mAdc}, I_B = 0)$ 2N5655G 2N5657G	V _{(BR)CEO}	250 350		Vdc
Collector Cutoff Current $(V_{CE} = 150 \text{ Vdc}, I_B = 0)$ 2N5655G $(V_{CE} = 250 \text{ Vdc}, I_B = 0)$ 2N5657G	ICEO	-	0.1 0.1	mAdc
	ICEX	- - -	0.1 0.1 1.0 1.0	mAdc
Collector Cutoff Current $(V_{CB} = 275 \text{ Vdc}, I_E = 0)$ 2N5655G $(V_{CB} = 375 \text{ Vdc}, I_E = 0)$ 2N5657G	Ісво	-	10 10	μAdc
Emitter Cutoff Current ($V_{EB} = 6.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	_	10	μAdc
ON CHARACTERISTICS				
DC Current Gain (Note 3) ($I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 250 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$)	h _{FE}	25 30 15 5.0	_ 250 _ _	_
	V _{CE(sat)}	- - -	1.0 2.5 10	Vdc
Base–Emitter Voltage (I _C = 100 mAdc, V _{CE} = 10 Vdc) (Note 3)	V _{BE}	_	1.0	Vdc
DYNAMIC CHARACTERISTICS	1		1	1
Current–Gain – Bandwidth Product ($I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 10 \text{ MHz}$) (Note 4)	fT	10	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 100 \text{ kHz})$	C _{ob}	-	25	pF
Small–Signal Current Gain ($I_C = 100 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}$)	h _{fe}	20	_	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions. 2. Indicates JEDEC registered data for 2N5655 Series. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%. 4. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

2N5655G, 2N5657G

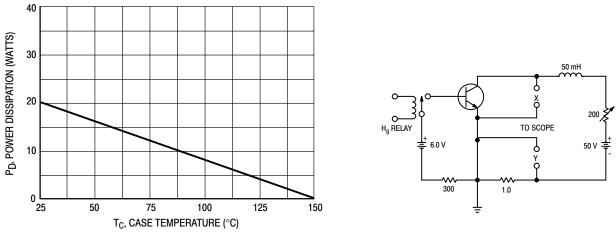
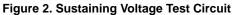



Figure 1. Power Derating

Safe Area Limits are indicated by Figures 3 and 4. Both limits are applicable and must be observed.

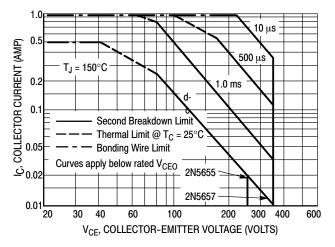


Figure 3. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 3 is based on $T_{J(pk)} = 150^{\circ}$ C; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}$ C. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

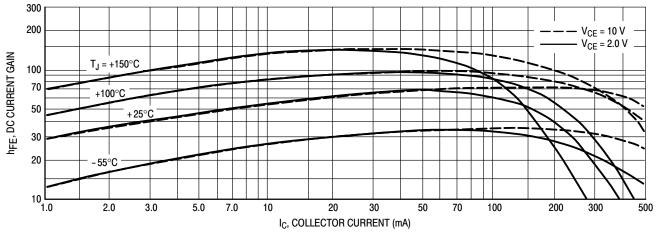


Figure 4. Current Gain

2N5655G, 2N5657G

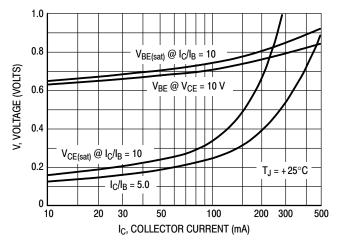
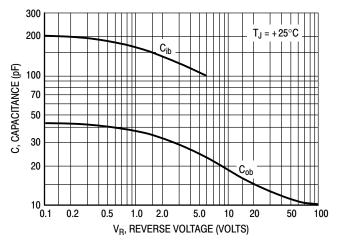
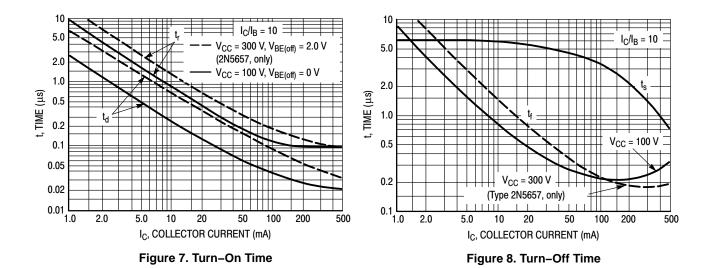
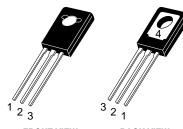




Figure 5. "On" Voltages



2N5655G, 2N5657G


PACKAGE DIMENSIONS

TO-225 CASE 77-09 **ISSUE AC**

FRONT VIEW

NOTES: 1. DIMENSIONING AND TOLERANCING PER

ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.40	3.00	
A1	1.00	1.50	
b	0.60	0.90	
b2	0.51	0.88	
C	0.39	0.63	
D	10.60	11.10	
Е	7.40	7.80	
е	2.04	2.54	
L	14.50	16.63	
L1	1.27	2.54	
Р	2.90	3.30	
Q	3.80	4.20	
	1. EMI	TTER LECTOR	

3. BASE

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. Al listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without imitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and ovary in different applications and actual performance may vary over time. All operating parameters, including "Typical" may be provided for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

For additional information, please contact your local Sales Representative

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.