

2N5962 Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number 2N5962-DG

Manufacturer onsemi

Manufacturer Product Number 2N5962

Description TRANS NPN 45V 0.1A TO92-3

Detailed Description Bipolar (BJT) Transistor NPN 45 V 100 mA 625 mW T

hrough Hole TO-92-3

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
2N5962	onsemi
Series:	Product Status:
	Obsolete
Transistor Type:	Current - Collector (Ic) (Max):
NPN	100 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
45 V	200mV @ 500μA, 10mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
2nA (ICBO)	600 @ 10mA, 5V
Power - Max:	Frequency - Transition:
625 mW	
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-226-3, TO-92-3 (TO-226AA)	TO-92-3
Base Product Number:	
2N5962	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
FAR99	8541 21 0095

Discrete POWER & Signal **Technologies**

2N5962

NPN General Purpose Amplifier

This device is designed for use as low noise, high gain, general purpose amplifiers requiring collector currents to 50 mA. Sourced from Process 07. See 2N5088 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	45	V
V _{CBO}	Collector-Base Voltage	45	V
V _{EBO}	Emitter-Base Voltage	8.0	V
Ic	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

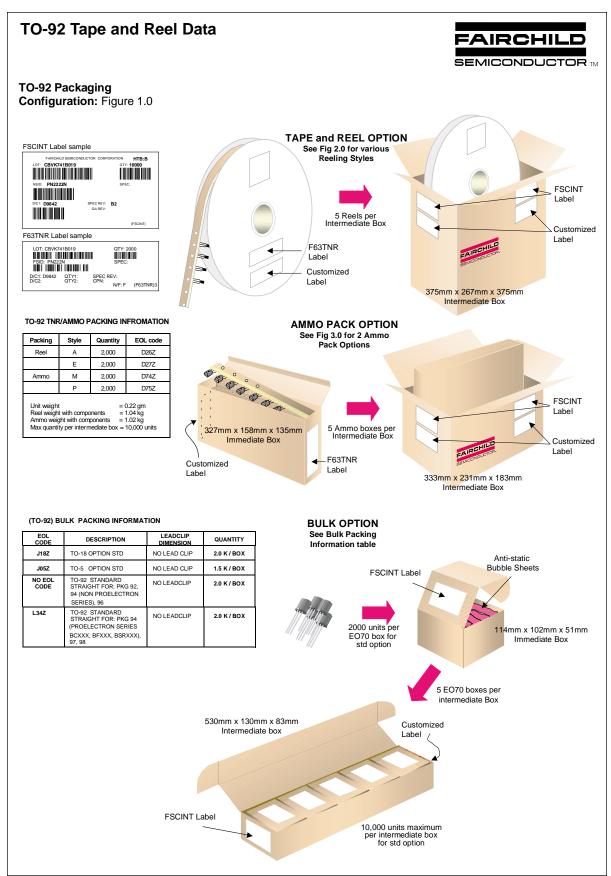
^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	М	Units	
		2N5962	*MMBT5962	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

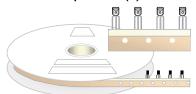
^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."


¹⁾ These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

NPN General Purpose Amplifier (continued)

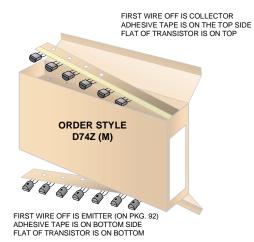
Symbol	Parameter	Test Conditions	Min	Max	Units
	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 5.0 \text{ mA}, I_{\rm B} = 0$	45	I	V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu\text{A}, I_E = 0$	45		V
/ _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu\text{A}, I_C = 0$	8.0		V
СВО	Collector Cutoff Current	V _{CB} = 30 V, I _E = 0 V _{CB} = 30 V, I _E = 0, T _A = 65 °C		2.0 50	nA nA
EBO	Emitter Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_{C} = 0$		1.0	nA
		$V_{CE} = 5.0 \text{ V}, I_C = 100 \mu\text{A}$ $V_{CE} = 5.0 \text{ V}, I_C = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$	500 550 600	1400	
ON CHAF	RACTERISTICS*				
		$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$			
	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$	0.5	0.2	V
V _{CE(sat)} V _{BE(on)}	Collector-Emitter Saturation Voltage Base-Emitter On Voltage	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_C = 1.0 \text{ mA}$	0.5	0.2	V
SMALL S	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	0.5	0.7	V
SMALL S	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 5.0 \text{ V}$	0.5	4.0	V
SMALL S	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 5.0 \text{ V}$ $V_{EB} = 0.5 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 1.0 \text{ kHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$	600	0.7	V
SMALL S Ccb Ceb	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 5.0 \text{ V}$ $V_{EB} = 0.5 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 1.0 \text{ kHz}$	600	4.0 6.0	V
SMALL S	Base-Emitter On Voltage BIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V}, \ I_C = 1.0 \text{ mA} \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_C = 10 \text{ mA}, \ V_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_C = 10 \text{ mA}, \ V_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 10 \mu\text{A}, \\ &R_S = 10 k\Omega, \ f = 1.0 k\text{Hz}, \\ &B_W = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &R_S = 1.0 k\Omega, \ f = 1.0 k\text{Hz}, \\ &B_W = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &R_S = 1.0 k\Omega, \ f = 1.0 k\text{Hz}, \\ &B_W = 400 \text{ Hz}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &R_S = 1.0 k\Omega, \ f = 1.0 k\text{Hz}, \\ &R_W = 400 \text{ Hz}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 5.0 \text{ V}, \ I_C = 100 \mu\text{A}, \\ &V_{CE} = 100 \mu\text{A}, \\$	600	0.7 4.0 6.0 200	pF pF
SMALL S	Base-Emitter On Voltage BIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CB} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ &R_{S} = 1.0 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &R_{W} = 400 \text{ Hz}, \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ &R_{C} = 5.0 V, I_{C} = 100 \mu\text{A}, \\ &R_{C} = 100 \mu\text{A}$	600	0.7 4.0 6.0 200	pF pF
V _{BE(On)}	Base-Emitter On Voltage BIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CB} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ &R_{S} = 1.0 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ \end{split}$	600	0.7 4.0 6.0 200 3.0 6.0	pF pF dB


^{*}Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty Cycle} \leq 2.0\%$

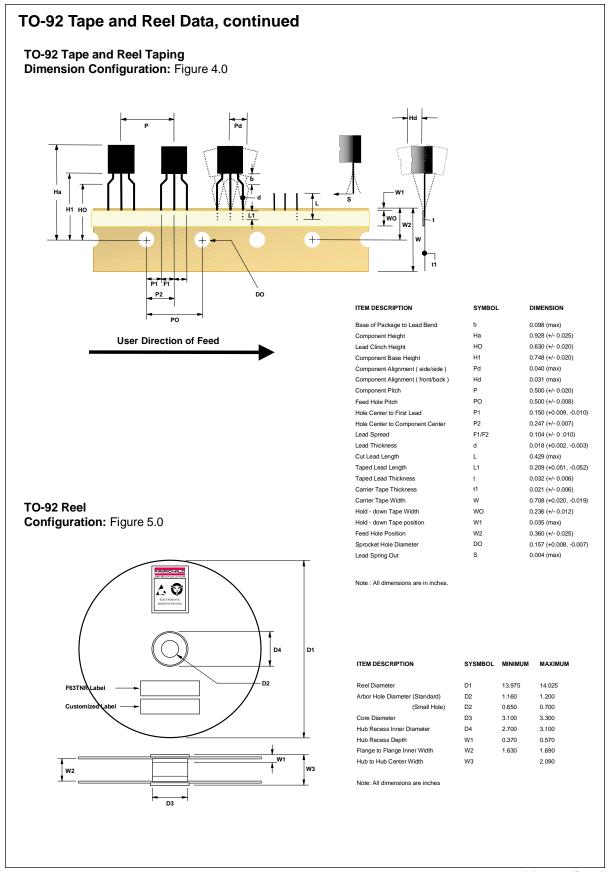
TO-92 Tape and Reel Data, continued

TO-92 Reeling Style Configuration: Figure 2.0

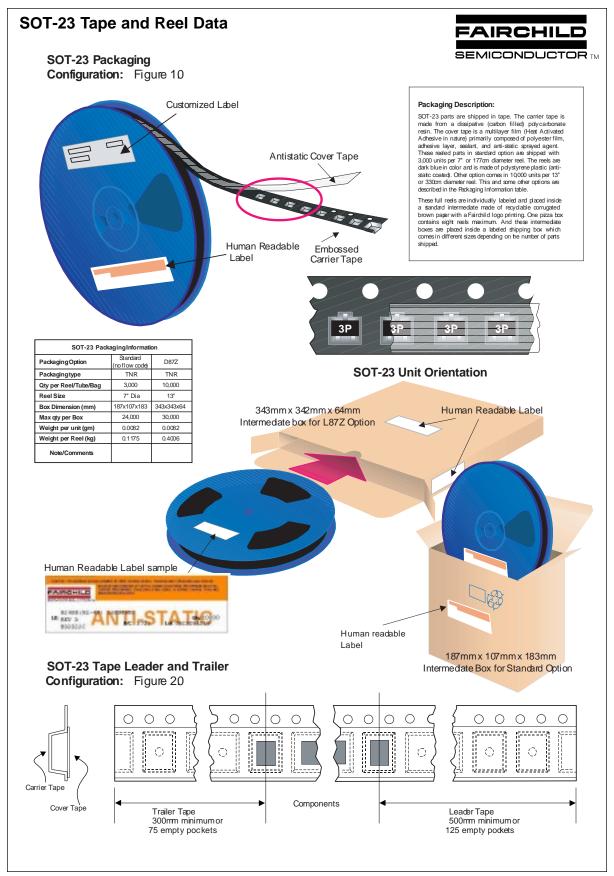
Machine Option "A" (H)

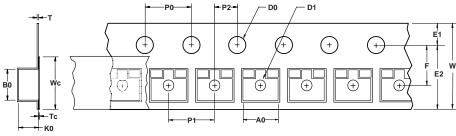


Style "A", D26Z, D70Z (s/h)


Machine Option "E" (J)

Style "E", D27Z, D71Z (s/h)


TO-92 Radial Ammo Packaging Configuration: Figure 3.0

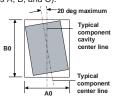

TO-92 Package Dimensions SEMICONDUCTOR TM TO-92 (FS PKG Code 92, 94, 96) Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters] Part Weight per unit (gram): 0.1977 0.185 4.70 0.170 4.32 TO-92 (92,94,96) 94 96 В В B F В D 2 В S С G Ε D Ø0.060 [Ø1.52] G В S С G 0.010 [0.254] DEEP 5.0°TYP.

SOT-23 Tape and Reel Data, continued

SOT-23 Embossed Carrier Tape

Configuration: Figure 3.0

User Direction of Feed	


	Dimensions are in millimeter													
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
SOT-23 (8mm)	3.15 +/-0.10	2.77 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.125 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.30 +/-0.10	0.228 +/-0.013	5.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

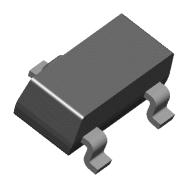
Sketch A (Side or Front Sectional View)
Component Rotation

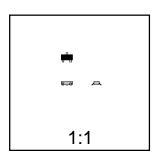
SOT-23 Reel Configuration: Figure 4.0

Sketch B (Top View)
Component Rotation

Sketch C (Top View)
Component lateral movement

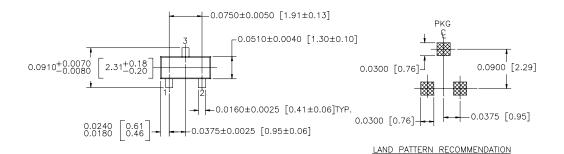
Dim A Max Dim N To Diameter Option

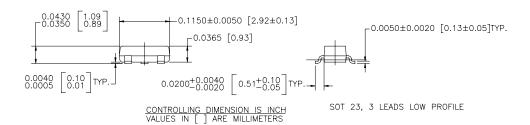

х		Dim N		I
			7'	Diameter Option
		/	_	B Min
	s	ee detail AA	Dim D	Dim C
		 → W3	min	
	13" Diameter Option	W2 max Measured at Hub		
				DETAIL AA


	Dimensions are in inches and millimeters								
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9

SOT-23 Package Dimensions

SOT-23 (FS PKG Code 49)





Scale 1:1 on letter size paper Dimensions shown below are in:

inches [millimeters]

Part Weight per unit (gram): 0.0082

NOTE : UNLESS OTHERWISE SPECIFIED

- 1. STANDARD LEAD FINISH 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
- 2. REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE G, DATED JUL 1993

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ VCX^{TM} $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™ DOME™

DOME™ ISOPLANAR™ Quiet Series™ E²CMOS™ MICROWIRF™ SII FNT SWITC

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com