

2N6034G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number 2N60

2N6034G-DG

Manufacturer

onsemi

Manufacturer Product Number

2N6034G

Description

TRANS PNP DARL 40V 4A TO126

Detailed Description

Bipolar (BJT) Transistor PNP - Darlington 40 V 4 A 4

0 W Through Hole TO-126

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
2N6034G	onsemi
Series:	Product Status:
	Obsolete
Transistor Type:	Current - Collector (Ic) (Max):
PNP - Darlington	4 A
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
40 V	3V @ 40mA, 4A
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
100μΑ	750 @ 2A, 3V
Power - Max:	Frequency - Transition:
40 W	
Operating Temperature:	Mounting Type:
-65°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-225AA, TO-126-3	TO-126
Base Product Number:	
2N6034	

Environmental & Export classification

8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Plastic Darlington Complementary Silicon Power Transistors

Plastic Darlington complementary silicon power transistors are designed for general purpose amplifier and low-speed switching applications.

Features

- ESD Ratings: Machine Model, C; > 400 V Human Body Model, 3B; > 8000 V
- Epoxy Meets UL 94 V-0 @ 0.125 in
- These Devices are Pb-Free and are RoHS Compliant*

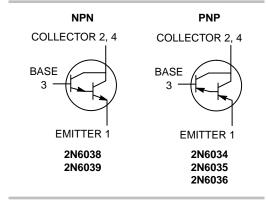
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage 2N6034G 2N6035G, 2N6038G 2N6036G, 2N6039G	V _{CEO}	40 60 80	Vdc
Collector–Base Voltage 2N6034G 2N6035G, 2N6038G 2N6036G, 2N6039G	V _{CBO}	40 60 80	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous	Ic	4.0	Adc
Collector Current – Peak	I _{CM}	8.0	Apk
Base Current	Ι _Β	100	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	40 320	W mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

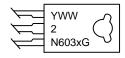
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.12	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	83.3	°C/W


^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

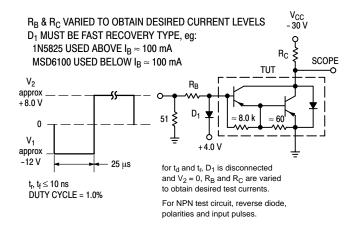
ON Semiconductor®


http://onsemi.com

4.0 AMPERES DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS 40, 60, 80 VOLTS, 40 WATTS

MARKING DIAGRAM

Y = Year WW = Work Week 2N603x = Device Code x = 4, 5, 6, 8, 9 G = Pb-Free Package


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	!
Collector–Emitter Sustaining Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 0$) 2N6034G 2N6035G, 2N6038G 2N6036G, 2N6039G	V _{CEO(sus)}	40 60 80	- - -	Vdc
Collector-Cutoff Current (V _{CE} = 40 Vdc, I _B = 0) 2N6034G (V _{CE} = 60 Vdc, I _B = 0) 2N6035G, 2N6038G (V _{CE} = 80 Vdc, I _B = 0) 2N6036G, 2N6039G	ICEO	- - -	100 100 100	μΑ
	I _{CEX}	- - - - -	100 100 100 500 500	μΑ
Collector-Cutoff Current (V _{CB} = 40 Vdc, I _E = 0) 2N6034G (V _{CB} = 60 Vdc, I _E = 0) 2N6035G, 2N6038G (V _{CB} = 80 Vdc, I _E = 0) 2N6036G, 2N6039G Emitter-Cutoff Current	I _{CBO}	- - -	0.5 0.5 0.5	mAdc mAdc
(V _{BE} = 5.0 Vdc, I _C = 0)			2.0	
ON CHARACTERISTICS DC Current Gain $(I_C = 0.5 \text{ Adc, } V_{CE} = 3.0 \text{ Vdc})$ $(I_C = 2.0 \text{ Adc, } V_{CE} = 3.0 \text{ Vdc})$ $(I_C = 4.0 \text{ Adc, } V_{CE} = 3.0 \text{ Vdc})$	h _{FE}	500 750 100	15,000	-
Collector–Emitter Saturation Voltage ($I_C = 2.0$ Adc, $I_B = 8.0$ mAdc) ($I_C = 4.0$ Adc, $I_B = 40$ mAdc)	V _{CE(sat)}	- -	2.0 3.0	Vdc
Base–Emitter Saturation Voltage (I _C = 4.0 Adc, I _B = 40 mAdc)	V _{BE(sat)}	_	4.0	Vdc
Base–Emitter On Voltage (I _C = 2.0 Adc, V _{CE} = 3.0 Vdc)	V _{BE(on)}	_	2.8	Vdc
DYNAMIC CHARACTERISTICS				•
Small-Signal Current-Gain (I _C = 0.75 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)	h _{fe}	25	-	-
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz) 2N6034G, 2N6035G, 2N6036G 2N6038G, 2N6039G	C _{ob}	<u>-</u>	200 100	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
*Indicates JEDEC Registered Data.

Figure 1. Switching Times Test Circuit

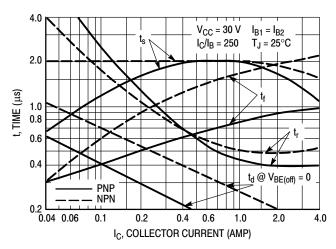


Figure 2. Switching Times

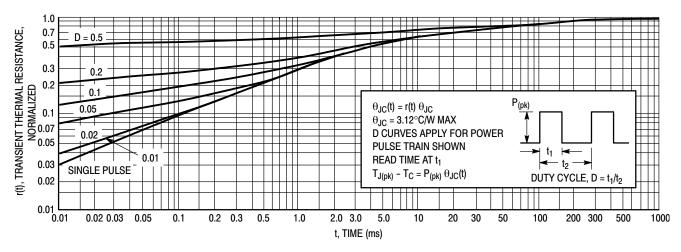
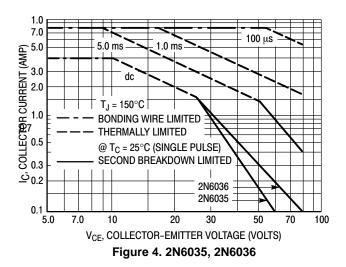



Figure 3. Thermal Response

ACTIVE-REGION SAFE-OPERATING AREA

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figures 4 and 5 is based on $T_{J(pk)} = 150^{\circ} C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ} C$. $T_{J(pk)}$ may be calculated from the data in Figure 3. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

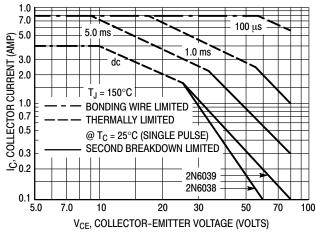
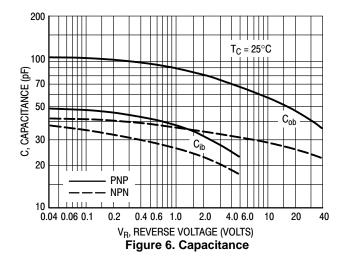
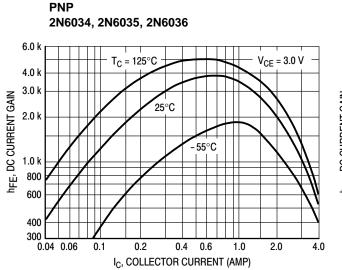




Figure 5. 2N6038, 2N6039

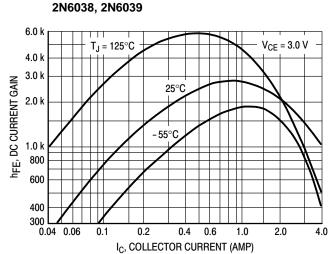


Figure 7. DC Current Gain

NPN

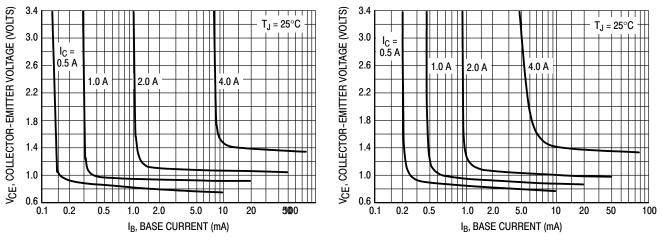


Figure 8. Collector Saturation Region

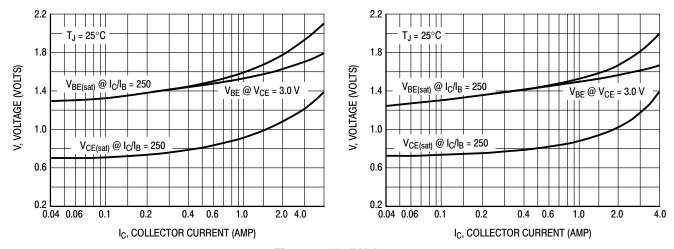
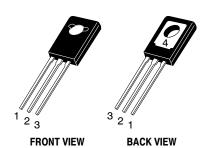
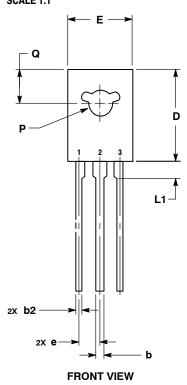


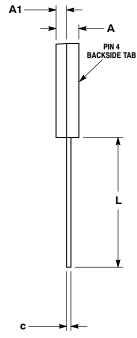
Figure 9. "On" Voltages


ORDERING INFORMATION

Device	Package	Shipping
2N6034G	TO-225 (Pb-Free)	500 Units / Box
2N6035G	TO-225 (Pb-Free)	500 Units / Box
2N6036G	TO-225 (Pb-Free)	500 Units / Box
2N6038G	TO-225 (Pb-Free)	500 Units / Box
2N6039G	TO-225 (Pb-Free)	500 Units / Box

MECHANICAL CASE OUTLINE


PACKAGE DIMENSIONS



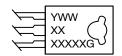
TO-225 CASE 77-09 **ISSUE AD**

DATE 25 MAR 2015

SCALE 1:1

SIDE VIEW

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.40	3.00		
A1	1.00	1.50		
b	0.60	0.90		
b2	0.51	0.88		
С	0.39	0.63		
D	10.60	11.10		
E	7.40	7.80		
е	2.04	2.54		
L	14.50	16.63		
L1	1.27	2.54		
P	2.90	3.30		
Q	3.80	4.20		

GENERIC MARKING DIAGRAM*

= Year ww = Work Week XXXXX = Device Code = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:	
PIN 1.	EMITTER	PIN 1.	CATHODE	PIN 1.	BASE	PIN 1.	ANODE 1	PIN 1.	MT 1
2., 4.	COLLECTOR	2., 4.	ANODE	2., 4.	COLLECTOR	2., 4.	ANODE 2	2., 4.	MT 2
3.	BASE	3.	GATE	3.	EMITTER	3.	GATE	3.	GATE
STYLE 6:		STYLE 7:		STYLE 8:		STYLE 9:		STYLE 10:	
PIN 1.	CATHODE	PIN 1.	MT 1	PIN 1.	SOURCE	PIN 1.	GATE	PIN 1.	SOURCE
2., 4.	GATE	2., 4.	GATE	2., 4.	GATE	2., 4.	DRAIN	2., 4.	DRAIN
3.	ANODE	3.	MT 2	3.	DRAIN	3.	SOURCE	3.	GATE

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-225		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com