

2V7002WT1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number 2V7002WT1G-DG

Manufacturer onsemi

Manufacturer Product Number 2V7002WT1G

Description MOSFET N-CH 60V 310MA SC70-3

Detailed Description N-Channel 60 V 310mA (Ta) 280mW (Tj) Surface Mo

unt SC-70-3 (SOT323)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
2V7002WT1G	onsemi
Series:	Product Status:
	Active
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
60 V	310mA (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
4.5V, 10V	1.60hm @ 500mA, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
2.5V @ 250μA	0.7 nC @ 4.5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	24.5 pF @ 20 V
FET Feature:	Power Dissipation (Max):
	280mW (Tj)
Operating Temperature:	Grade:
-55°C ~ 150°C (TJ)	Automotive
Qualification:	Mounting Type:
AEC-Q101	Surface Mount
Supplier Device Package:	Package / Case:
SC-70-3 (SOT323)	SC-70, SOT-323
Base Product Number:	
2V7002	

Environmental & Export classification

8541.21.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

MOSFET - Small Signal, **N-Channel, Single**

60 V, 340 mA, SC-70

2N7002W, 2V7002W

Features

- ESD Protected
- Low R_{DS(on)}
- Small Footprint Surface Mount Package
- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

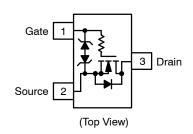
Applications

- Low Side Load Switch
- Level Shift Circuits
- DC-DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	V
Gate-to-Source Voltage	V_{GS}	±20	V
	I _D	310 220	mA
t < 5 s		340 240	
Power Dissipation (Note 1) Steady State t < 5 s	P _D	280 330	mW
Pulsed Drain Current (t _p = 10 μs)	I _{DM}	1.4	Α
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)	I _S	250	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	TL	260	°C
Gate-Source ESD Rating (HBM, Method 3015)	ESD	2000	V

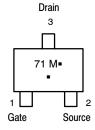
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	450	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 1)	$R_{\theta JA}$	375	

^{1.} Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
60 V	1.6 Ω @ 10 V	340 mA
	2.5 Ω @ 4.5 V	


SIMPLIFIED SCHEMATIC

SC-70/SOT-323 **CASE 419** STYLE 8

MARKING DIAGRAM & PIN ASSIGNMENT

= Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
2N7002WT1G	SC-70 (Pb-Free)	3000/Tape & Reel
2V7002WT1G	SC-70 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

November, 2022 - Rev. 7

2N7002W, 2V7002W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test	Condition	Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D =$	250 μΑ	60	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J			-	71	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C	-	-	1.0	μΑ
		V _{DS} = 60 V	T _J = 150°C	-	-	15	μΑ
		V _{GS} = 0 V,	T _J = 25°C	_	-	100	nA
		V _{DS} = 50 V	T _J = 150°C	_	-	10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$	= ±20 V	-	-	±10	μΑ
		V _{DS} = 0 V, V _{GS}	= ±10 V	-	-	450	nA
		V _{DS} = 0 V, V _{GS}	= ±5.0 V	_	-	150	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	1.0	-	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			-	4.0	-	mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 500 \text{ mA}$ $V_{GS} = 4.5 \text{ V}, I_D = 200 \text{ mA}$		-	1.19	1.6	Ω
				-	1.33	2.5	1
Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 200 mA		-	530	-	mS
CHARGES AND CAPACITANCES				-			
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1	MHz,	_	24.5	-	pF
Output Capacitance	C _{OSS}	V _{DS} = 20 V		-	4.2	-	1
Reverse Transfer Capacitance	C _{RSS}	1		-	2.2	-	
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _E	os = 10 V;	-	0.7	-	nC
Threshold Gate Charge	Q _{G(TH)}	$I_D = 200 \text{ mA}$		-	0.1	-	
Gate-to-Source Charge	Q_{GS}	1		-	0.3	-	
Gate-to-Drain Charge	Q_{GD}	†		-	0.1	-	1
SWITCHING CHARACTERISTICS, V _{GS}	= V (Note 3)	•		•			
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 10 \text{ V}, V_{D}$	V _{GS} = 10 V, V _{DD} = 25 V,		12.2	-	ns
Rise Time	t _r	I_D = 500 mA, R_G = 25 Ω		-	9.0	-	
Turn-Off Delay Time	t _{d(OFF)}			-	55.8	-	
Fall Time	t _f			-	29	_	1
DRAIN-SOURCE DIODE CHARACTER	ISTICS			-			
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C	_	0.8	1.2	V
		$I_{S} = 200 \text{ mA}$ $T_{J} = 85^{\circ}\text{C}$		_	0.7	-	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%

3. Switching characteristics are independent of operating junction temperatures

2N7002W, 2V7002W

TYPICAL CHARACTERISTICS

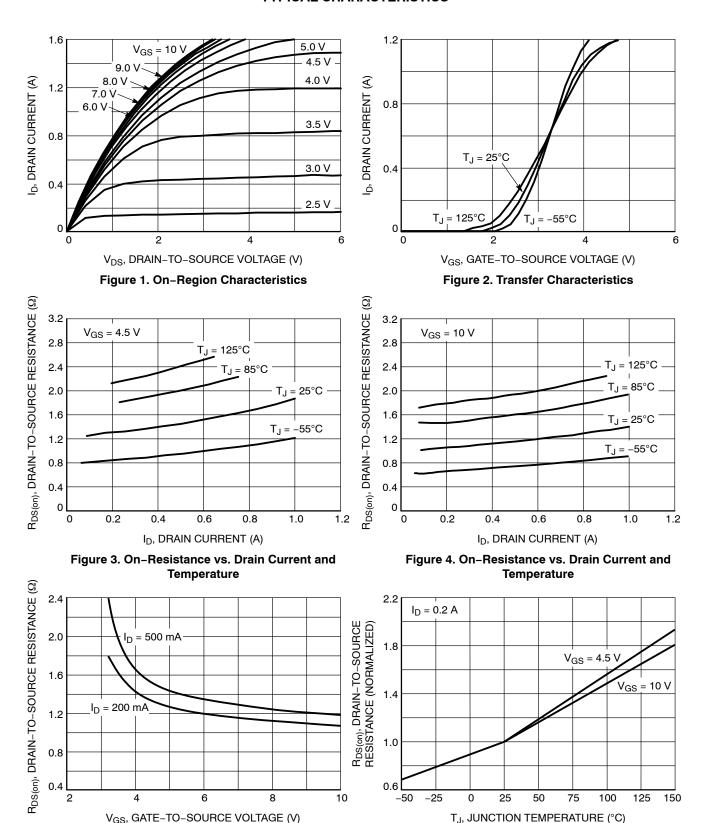


Figure 6. On-Resistance Variation with

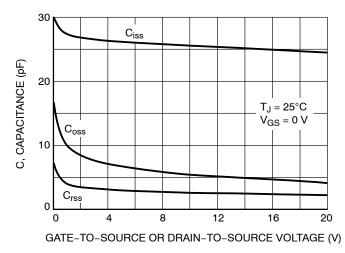

Temperature

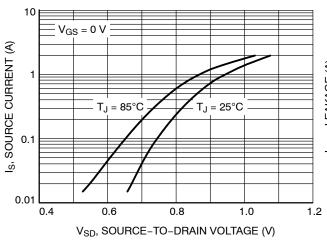
Figure 5. On-Resistance vs. Gate-to-Source

Voltage

2N7002W, 2V7002W

TYPICAL CHARACTERISTICS

T_J = 25°C

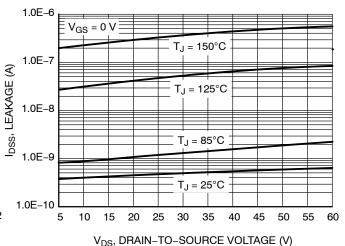

T_D = 0.2 A

I_D = 0.2 A

Qg, TOTAL GATE CHARGE (nC)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge



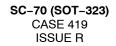
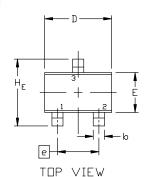
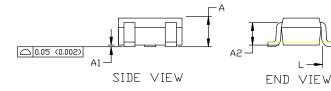

Figure 9. Diode Forward Voltage vs. Current

Figure 10. Drain-to-Source Leakage Current vs. Voltage


MECHANICAL CASE OUTLINE

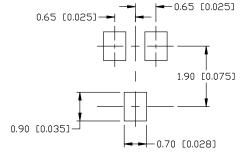

PACKAGE DIMENSIONS

DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MI	LLIMETE	RS		INCHES	CHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2		0.70 REF			0.028 BS	C	
b	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.00	2.20	0.071	0.080	0.087	
E	1.15	1.24	1,35	0.045	0.045 0.049		
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1		0.65 BSC	,	0.026 BSC			
L	0.20	0.38	0.56	0.008	0.015	0.022	
HE	2.00	2.10	2.40	0.079	0.083	0.095	



XX = Specific Device Code

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com