

74AC191SJ Datasheet

www.digi-electronics.com

Μ

4AC191SJ-DG
nsemi
4AC1915J
E BINARY COUNTER 4-BIT 16SOP
ounter IC Binary Counter 1 Element 4 Bit Positive E ge 16-SOP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74AC1915J	onsemi
Series:	Product Status:
74AC	Obsolete
Logic Type:	Direction:
Binary Counter	Up, Down
Number of Elements:	Number of Bits per Element:
1	4
Reset:	Timing:
	Synchronous
Count Rate:	Trigger Type:
133 MHz	Positive Edge
Voltage - Supply:	Operating Temperature:
2 V ~ 6 V	-40°C ~ 85°C
Mounting Type:	Package / Case:
Surface Mount	16-SOIC (0.209", 5.30mm Width)
Supplier Device Package:	Base Product Number:
16-SOP	74AC191

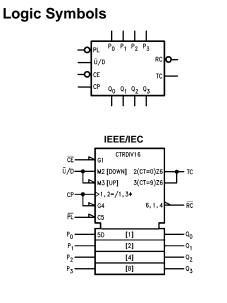
Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

FAIRCHILD

74AC191 **Up/Down Counter with Preset and Ripple Clock**

General Description


Revised November 1999

Features

- I_{CC} reduced by 50%
- High speed—133 MHz typical count frequency
- Synchronous counting
- Asynchronous parallel load
- Cascadable
- Outputs source/sink 24 mA

Ordering Code:

SEMICONE	1	r with Prese	November 1988 Revised November 1999
The AC191 is a tures synchrono The preset feat grammable divic Count output an variety of metho	us counting and asynure allows the AC19 lers. The Count Enabled the Ripple Clock of d the Ripple Clock of ds of implementing m des, state changes a	binary counter. It fea- nchronous presetting. 1 to be used in pro- ble input, the Terminal ttput make possible a nutistage counters. In re initiated by the ris-	Features I _{CC} reduced by 50% High speed—133 MHz typical count frequency Synchronous counting Asynchronous parallel load Cascadable Outputs source/sink 24 mA
	Codo		
Order Number			Backage Description
Order Number	Package Number		Package Description
Order Number 74AC191SC	Package Number M16A	16-Lead Small Outline	Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
•	Package Number	16-Lead Small Outline 16-Lead Small Outline	0

Connection Diagram

		$\overline{\mathbf{O}}$		
P1-	1	_	16	-v _{cc}
Q1-	2		15	-P0
۹ ₀ –	3		14	— CP
CE -	4		13	- RC
Ū/D-	5		12	— тс
Q2 —	6		11	- PL
Q3 —	7		10	-P2
GND —	8		9	-P3

Pin Descriptions

Pin Names	Description
CE	Count Enable Input
CP	Clock Pulse Input
$P_0 - P_3$	Parallel Data Inputs
PL	Asynchronous Parallel Load Input
U/D	Up/Down Count Control Input
Q ₀ –Q ₃	Flip-Flop Outputs
RC	Ripple Clock Output
TC	Terminal Count Output

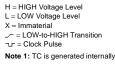
FACT™ is a trademark of Fairchild Semiconductor Corporation.

RC Truth Table	RC	Truth	Table
-----------------------	----	-------	-------

	Outputs			
PL	CE	TC (Note 1)	СР	RC
Н	L	Н	Ч	v
Н	н	х	х	н
н	х	L	х	н
L	х	х	х	Н

Functional Description

The AC191 is a synchronous up/down counter. The AC191 is organized as a 4-bit binary counter. It contains four edgetriggered flip-flops with internal gating and steering logic to provide individual preset, count-up and count-down operations.

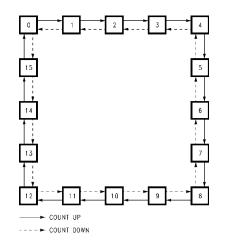

Each circuit has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load (\overline{PL}) input is LOW, information present on the Parallel Load inputs (P_0 – P_3) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.

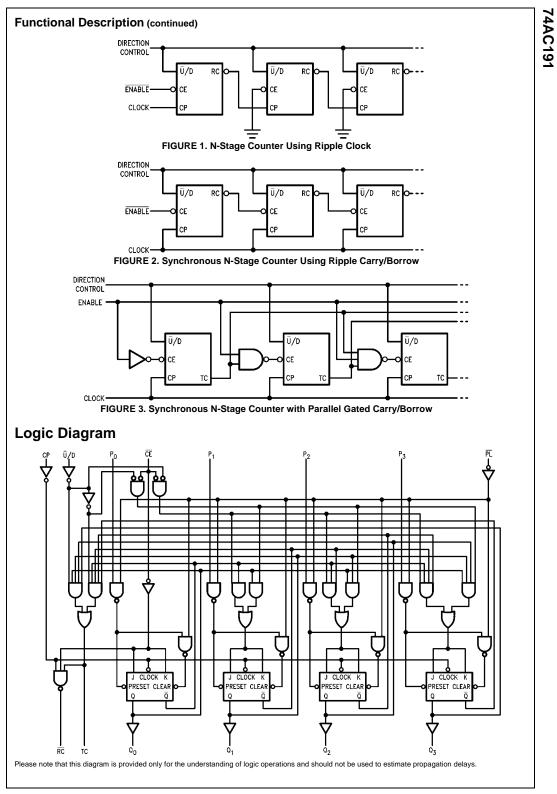
A HIGH signal on the \overline{CE} input inhibits counting. When \overline{CE} is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \overline{U}/D input signal, as indicated in the Mode Select Table. \overline{CE} and \overline{U}/D can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.

Two types of outputs are provided as overflow/underflow indicators. The terminal count (TC) output is normally LOW. It goes HIGH when the circuits reach zero in the count down mode or 15 in the count up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until \overline{U}/D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.

The TC signal is also used internally to enable the Ripple Clock (RC) output. The RC output is normally HIGH. When CE is LOW and TC is HIGH, RC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multistage counters, as indicated in Figure 1 and Figure 2. In Figure 1, each RC output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on CE inhibits the RC output pulse, as indicated in the RC Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.

A method of causing state changes to occur simultaneously in all stages is shown in Figure 2. All clock inputs are driven in parallel and the $\overline{\text{RC}}$ outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negative-going edge of the carry/borrow signal to


ripple through to the last stage before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the $\overrightarrow{\text{RC}}$ output of any device goes HIGH shortly after its CP input goes HIGH.


The configuration shown in Figure 3 avoids ripple delays and their associated restrictions. The \overline{CE} input for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of Figure 1 and Figure 2 doesn't apply, because the TC output of a given stage is not affected by its own \overline{CE} .

Mode Select Table

Inputs				Mode	
PL	CE	U/D	СР		
Н	L	L	~	Count Up	
Н	L	н	~	Count Down	
L	Х	х	Х	Preset (Asyn.)	
Н	Н	Х	х	No Change (Hold)	

State Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	$-0.5 V$ to $V_{CC} + 0.5 V$
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
V_{IN} from 30% to 70% of V_{CC}	
V _{CC} @ 3.3V 4.5V, 5.5V	125 mV/ns

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, output/input loading variables. Fairchild does not recommend operation of FACT[™] circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = -	+25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Symbol			Тур	Gu	aranteed Limits	Units	Conditions
VIH	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$
		5.5	2.75	3.85	3.85		
/ _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$
		5.5	2.75	1.65	1.65		
/ _{он}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$
		5.5	5.49	5.4	5.4		
		3.0		2.56	2.46		$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	I _{OH} –12 mA
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$
							I _{OH} .= -24 mA (Note
/ _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$
		5.5	0.001	0.1	0.1		
		3.0		0.36	0.44		$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	$I_{OL} = 12 \text{ mA}$
		5.5		0.36	0.44		$I_{OL} = 24 \text{ mA}$
							I _{OL} = 24 mA (Note 3)
IN	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND
Note 5)	Leakage Current	0.0		±0.1	1.0	μΑ	$v_{\rm I} = v_{\rm CC}, {\rm Grap}$
OLD	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
OHD	Output Current (Note 4)	5.5			-75	mA	V _{OHD} = 3.85V Min
СС	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
(Note 5)	Supply Current	5.5		7.0	-0.0	μΛ	or GND

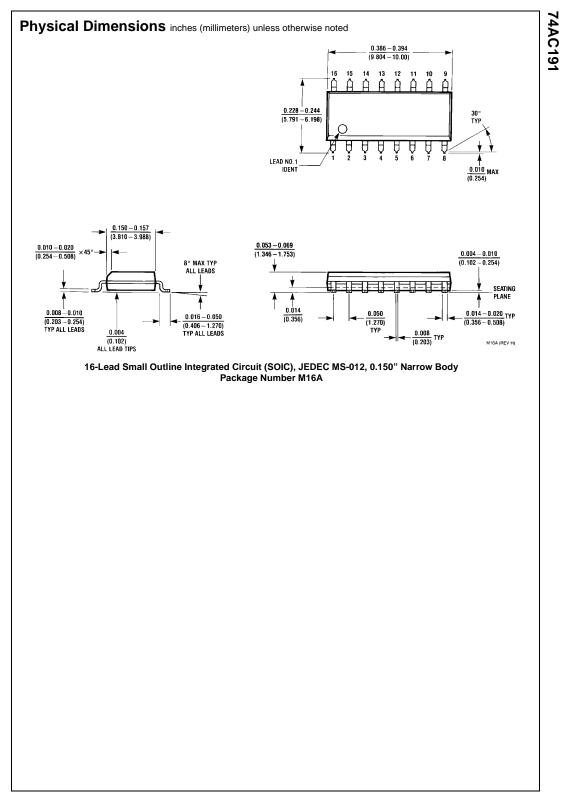
Note 5. All outputs loaded, thresholds on input associated with output unde

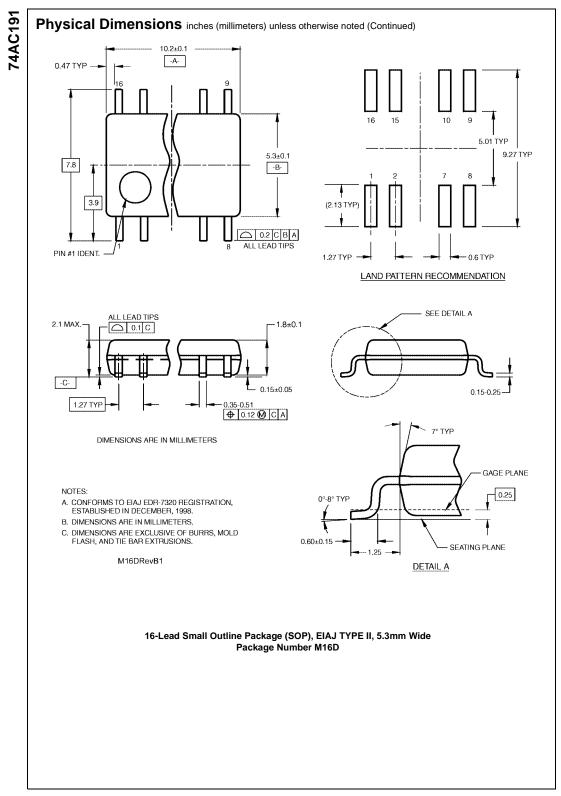
Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

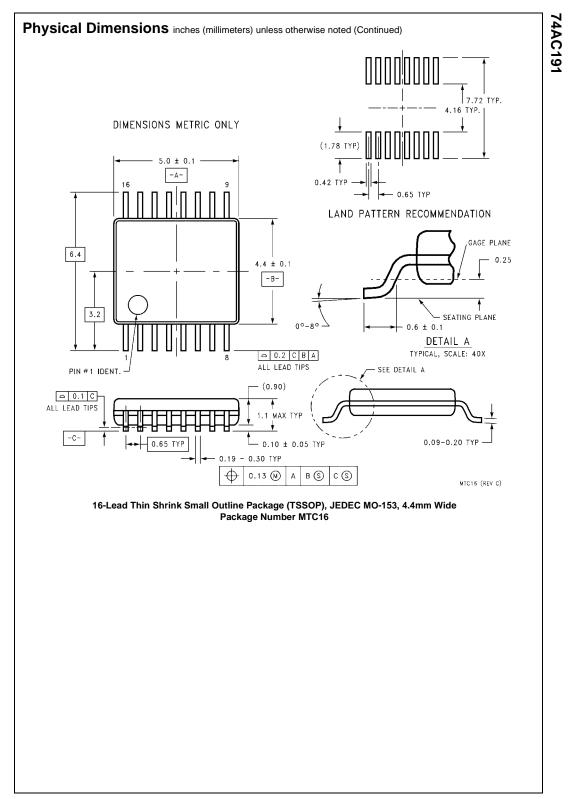
	Parameter	V _{CC}	V _{CC} C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
Symbol		(V)	T _A = +25°C			C _L = 50 pF		Units
		(Note 6)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Count	3.3	70	105		65		MHz
	Frequency	5.0	90	133		85		
t _{PLH}	Propagation Delay	3.3	2.0	8.5	15.0	1.5	16.0	ns
	CP to Q _n	5.0	1.5	6.0	11.0	1.5	12.0	
t _{PHL}	Propagation Delay	3.3	2.5	8.5	14.5	2.0	16.0	ns
	CP to Q _n	5.0	1.5	6.0	10.5	1.5	11.5	
t _{PLH}	Propagation Delay	3.3	3.5	10.5	18.0	2.5	20.0	ns
	CP to TC	5.0	2.5	7.5	12.0	1.5	14.0	
t _{PHL}	Propagation Delay	3.3	4.0	10.5	17.5	3.0	19.0	ns
	CP to TC	5.0	2.5	7.5	12.5	2.0	13.5	
t _{PLH}	Propagation Delay	3.3	2.5	7.5	12.0	2.0	13.5	ns
	CP to RC	5.0	2.0	5.5	9.5	1.0	10.5	
t _{PHL}	Propagation Delay	3.3	2.5	7.0	11.5	2.0	12.5	ns
	CP to RC	5.0	1.5	5.0	8.5	1.0	9.5	
t _{PLH}	Propagation Delay	3.3	2.5	7.0	12.0	1.5	13.5	ns
	CE to RC	5.0	1.5	5.0	8.5	1.0	9.5	
t _{PHL}	Propagation Delay	3.3	2.0	6.5	11.0	1.5	12.5	ns
	CE to RC	5.0	1.5	5.0	8.0	1.0	9.0	
t _{PLH}	Propagation Delay	3.3	2.5	6.5	12.5	2.0	14.5	ns
	U /D to RC	5.0	1.5	5.0	9.0	1.0	10.0	
t _{PHL}	Propagation Delay	3.3	2.5	7.0	12.0	2.0	13.5	ns
	U /D to RC	5.0	1.5	5.0	8.5	1.0	10.0	
t _{PLH}	Propagation Delay	3.3	2.0	7.0	11.5	1.5	13.5	ns
	U /D to TC	5.0	1.5	5.0	8.5	1.0	9.5	
t _{PHL}	Propagation Delay	3.3	2.0	6.5	11.0	1.5	12.5	ns
	U /D to TC	5.0	1.5	5.0	8.5	1.0	9.5	115
t _{PLH}	Propagation Delay	3.3	2.5	8.0	13.5	2.0	15.5	ns
	P _n to Q _n	5.0	2.0	5.5	9.5	1.0	10.5	
t _{PHL}	Propagation Delay	3.3	2.5	7.5	13.0	1.5	14.5	ns
	P _n to Q _n	5.0	1.5	5.5	9.5	1.0	10.5	115
t _{PLH}	Propagation Delay	3.3	3.5	9.5	14.5	2.5	17.5	ns
	PL to Q _n	5.0	2.0	5.5	9.5	1.0	10.5	115
PHL	Propagation Delay	3.3	3.0	8.0	13.5	2.0	15.5	nc
	PL to Q _n	5.0	2.0	6.0	10.0	1.5	11.0	ns

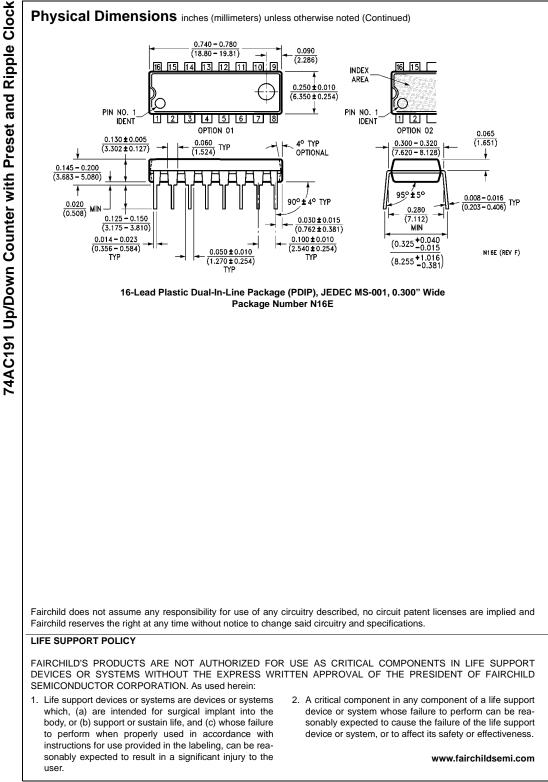
Note 6: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is 5.0V $\pm\,0.5V$


www.fairchildsemi.com


	Parameter	V _{cc}	T _A = +25°C C _L = 50 pF		$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C} \text{ to }+85^{\circ}\textbf{C}$	Units	
Symbol		(V)			$C_L = 50 \text{ pF}$		
		(Note 7)	Тур	Guaranteed Minimum			
t _S	Setup Time, HIGH or LOW	3.3	1.0	3.0	3.0	ns	
	P _n to PL	5.0	0.5	2.0	2.5		
t _H	Hold Time, HIGH or LOW	3.3	-1.5	0.5	1.0	ns	
	P _n to PL	5.0	-0.5	1.0	1.0		
t _S	Setup Time, LOW	3.3	3.0	6.0	7.0	ns	
	CE to CP	5.0	1.5	4.0	4.5		
t _H	Hold Time, LOW	3.3	-4.0	-0.5	-0.5	ns	
	CE to CP	5.0	-2.5	0	0		
t _S	Setup Time, HIGH or LOW	3.3	4.0	8.0	9.0		
	U/D to CP	5.0	2.5	5.5	6.5	ns	
t _H	Hold Time, HIGH or LOW	3.3	-5.0	0	0	ns	
	U/D to CP	5.0	-3.0	0.5	0.5		
t _W	PL Pulse Width, LOW	3.3	2.0	3.5	4.0	ns	
		5.0	1.0	1.0	1.0		
t _W	CP Pulse Width, LOW	3.3	2.0	3.5	4.0	ns	
		5.0	2.0	3.0	4.0		
t _{rec}	Recovery Time	3.3	-0.5	0	0	ns	
	PL to CP	5.0	-1.0	0	0		

Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$


Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	75.0	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com

www.fairchildsemi.com

10

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.