

74ACTQ374SJ Datasheet

Ma

DiGi Electronics Part Number	74ACTQ374SJ-DG
Manufacturer	onsemi
Manufacturer Product Number	74ACTQ374SJ
Description	IC FF D-TYPE SNGL 8BIT 20SOP
Detailed Description	Flip Flop 1 Element D-Type 8 Bit Positive Edge 20-S OIC (0.209", 5.30mm Width)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74ACTQ374SJ	onsemi
Series:	Product Status:
74ACTQ	Obsolete
Function:	Type:
Standard	D-Туре
Output Type:	Number of Elements:
Tri-State, Non-Inverted	1
Number of Bits per Element:	Clock Frequency:
8	85 MHz
Max Propagation Delay @ V, Max CL:	Trigger Type:
9ns @ 5V, 50pF	Positive Edge
Current - Output High, Low:	Voltage - Supply:
24mA, 24mA	4.5V ~ 5.5V
Current - Quiescent (Iq):	Input Capacitance:
40 µA	4.5 pF
Operating Temperature:	Mounting Type:
-40°C ~ 85°C (TA)	Surface Mount
Supplier Device Package:	Package / Case:
20-SOP	20-SOIC (0.209", 5.30mm Width)
Base Product Number:	
74ACTQ374	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

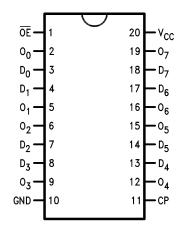
74ACQ374, 74ACTQ374 Quiet Series™ Octal D-Type Flip-Flop with 3-STATE Outputs

Features

- I_{CC} and I_{OZ} reduced by 50%
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Improved latch-up immunity
- Buffered positive edge-triggered clock
- 3-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24mA
- Faster prop delays than the standard AC/ACT374

Ordering Information

General Description

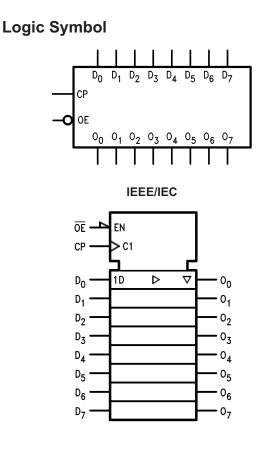

The ACQ/ACTQ374 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (\overline{OE}) are common to all flip-flops.

The ACQ/ACTQ374 utilizes FACT Quiet Series™ technology to guarantee quiet output switching and improve dynamic threshold performance. FACT Quiet Series features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

•		
Order Number	Package Number	Package Description
74ACQ374SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACQ374SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACTQ374SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACTQ374SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACTQ374QSC	MQA20	20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

Connection Diagram



Pin Description

Pin Names	Description
D ₀ D ₇	Data Inputs
СР	Clock Pulse Input
ŌĒ	3-STATE Output Enable Input
O ₀ –O ₇	3-STATE Outputs

FACT™, Quiet Series™, FACT Quiet Series™, and GTO™ are trademarks of Fairchild Semiconductor Corporation.

April 2007

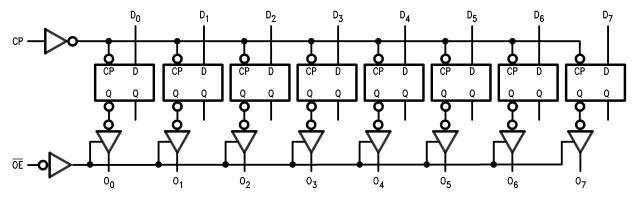
Functional Description

The ACQ/ACTQ374 consists of eight edge-triggered flipflops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

Truth Table

Inputs			Outputs
D _n	СР	OE	O _n
Н	~	L	Н
L	~	L	L
Х	Х	Н	Z

H = HIGH Voltage Level


L = LOW Voltage Level

X = Immaterial

Z = High Impedance

✓ = LOW-to-HIGH Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

74ACQ374, 74ACTQ374 Quiet Series[™] Octal D-Type Flip-Flop with 3-STATE Outputs

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5V$	+20mA
VI	DC Input Voltage	-0.5V to V _{CC} + 0.5V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{O} = V_{CC} + 0.5V$	+20mA
Vo	DC Output Voltage	–0.5V to V _{CC} + 0.5V
I _O	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
	DC Latch-Up Source or Sink Current	±300mA
TJ	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	ACQ	2.0V to 6.0V
	ACTQ	4.5V to 5.5V
VI	Input Voltage	0V to V _{CC}
Vo	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
$\Delta V / \Delta t$	Minimum Input Edge Rate, ACQ Devices:	125mV/ns
	V_{IN} from 30% to 70% of $V_{\text{CC}}, V_{\text{CC}}$ @ 3.0V, 4.5V, 5.5V	
$\Delta V / \Delta t$	Minimum Input Edge Rate, ACTQ Devices:	125mV/ns
	V _{IN} from 0.8V to 2.0V, V _{CC} @ 4.5V, 5.5V	

				$T_A = -$	⊦25°C	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	3.0	V _{OUT} = 0.1V or	1.5	2.1	2.1	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	3.15	3.15	1
		5.5		2.75	3.85	3.85	1
V _{IL}	Maximum LOW Level	3.0	$V_{OUT} = 0.1V \text{ or}$	1.5	0.9	0.9	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	1.35	1.35	1
		5.5		2.75	1.65	1.65	1
V _{OH}	Minimum HIGH Level	3.0	Ι _{ΟUT} =50μΑ	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	1
		5.5		5.49	5.4	5.4	1
			$V_{IN} = V_{IL}$ or V_{IH} :				1
		3.0	I _{OH} = -12mA		2.56	2.46	
		4.5	$I_{OH} = -24mA$		3.86	3.76	1
		5.5	$I_{OH} = -24 m A^{(1)}$		4.86	4.76	1
V _{OL}	Maximum LOW Level	3.0	Ι _{ΟUT} = 50μΑ	0.002	0.1	0.1	V
	Output Voltage	4.5		0.001	0.1	0.1	1
		5.5		0.001	0.1	0.1	1
		3.0	$I_{OL} = 12mA$		0.36	0.44	1
		4.5	$I_{OL} = 24 \text{mA}$		0.36	0.44	1
		5.5	$I_{OL} = 24 m A^{(1)}$		0.36	0.44	1
I _{IN} ⁽³⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}, GND$		±0.1	±1.0	μΑ
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽²⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC} ⁽³⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μΑ
I _{OZ}	Maximum 3-STATE Leakage Current	5.5			±0.25	±2.5	μA
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁴⁾	1.1	1.5		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁴⁾	-0.6	-1.2		V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	(5)	3.1	3.5		V
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	(5)	1.9	1.5		V

Notes:

1. All outputs loaded; thresholds on input associated with output under test.

2. Maximum test duration 2.0ms, one output loaded at a time.

3. I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

4. Max number of outputs defined as (n). Data inputs are driven 0V to 5V. One output @ GND.

5. Max number of data inputs (n) switching. (n–1) inputs switching 0V to 5V (ACQ). Input-under-test switching: 5V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1MHz.

				$T_A = \cdot$	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Typ. Gu		uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	$V_{OUT} = 0.1V \text{ or}$	1.5	2.0	2.0	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0	1
V _{IL}	Maximum LOW Level	4.5	$V_{OUT} = 0.1V \text{ or}$	1.5	0.8	0.8	V
	Input Voltage	5.5	5 V _{CC} – 0.1V		0.8	0.8	1
V _{OH}	Minimum HIGH Level	4.5	$I_{OUT} = -50 \mu A$	4.49	4.4	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	1
			$V_{IN} = V_{IL} \text{ or } V_{IH}$:				
		4.5	I _{OH} = -24mA		3.86	3.76	V
		5.5	$I_{OH} = -24 m A^{(6)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	4.5	$I_{OUT} = 50 \mu A$	0.001	0.1	0.1	V
	Output Voltage	5.5		0.001	0.1	0.1	1
			$V_{IN} = V_{IL} \text{ or } V_{IH}$:				1
		4.5	$I_{OL} = 24 \text{mA}$		0.36	0.44	
		5.5	$I_{OL} = 24 m A^{(6)}$		0.36	0.44	
I _{IN} ⁽³⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μΑ
I _{OZ}	Maximum 3-STATE Current	5.5	$V_{I} = V_{IL}, V_{IH};$ $V_{O} = V_{CC}, \text{ GND}$		±0.25	±2.5	μA
I _{CCT}	Maximum I _{CC} /Input ⁽³⁾	5.5	$V_{I} = V_{CC} - 2.1V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	$V_{OLD} = 1.65V$ Max.			75	mA
I _{OHD}	Output Current ⁽⁶⁾		V _{OHD} = 3.85V Min.			-75	mA
I _{CC} ⁽³⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁸⁾	1.1	1.5		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽⁸⁾	-0.6	-1.2		V
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	(9)	1.9	2.2		V
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	(9)	1.2	0.8		V

Notes:

6. All outputs loaded; thresholds on input associated with output under test.

7. Maximum test duration 2.0ms, one output loaded at a time.

8. Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND

9. Max number of data inputs (n) switching. (n-1) inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1MHz.

AC Electrical Characteristics for ACQ $T_A = -40^{\circ}C$ to +85°C, $T_A = +25^{\circ}C,$ $\hat{C}_{I} = 50 pF$ $C_L = 50 pF$ $V_{CC} (V)^{(10)}$ Symbol Parameter Min. Typ. Max. Min. Max. Units Maximum Clock 3.3 75 70 MHz f_{MAX} Frequency 5.0 90 85 Propagation Delay, t_{PLH}, t_{PHL} 3.3 3.0 9.5 13.0 3.0 13.5 ns CP to On 5.0 2.0 6.5 8.5 2.0 9.0 **Output Enable Time** 3.3 3.0 9.5 13.0 3.0 13.5 t_{PZL}, t_{PZH} ns 5.0 2.0 6.5 8.5 2.0 9.0 t_{PHZ}, t_{PLZ} **Output Disable Time** 3.3 1.0 9.5 14.5 1.0 15.0 ns 5.0 1.0 8.0 9.5 1.0 10.0 Output to Output Skew, CP to $O_n^{(11)}$ 3.3 1.0 1.5 1.5 ns t_{OSHL}, t_{OSLH} 5.0 0.5 1.0 1.0

Notes:

10. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V.

11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements for ACQ

			T _A = + C _L =	-25°C, 50pF	$\label{eq:T_A} \begin{split} T_A &= -40^\circ C \text{ to } +85^\circ C, \\ C_L &= 50 p F \end{split}$	
Symbol	Parameter	V _{CC} (V) ⁽¹²⁾	Тур.	Gua	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW,	3.3	0	3.0	3.0	ns
	D _n to CP	5.0	0	3.0	3.0	
t _H	Hold Time, HIGH or LOW,	3.3	0	1.5	1.5	ns
	D _n to CP	5.0	2.0	1.5	1.5	
t _W	CP Pulse Width, HIGH or LOW	3.3	2.0	4.0	4.0	ns
		5.0	2.0	4.0	4.0	

Note:

12. Voltage range 5.0 is 5.0V \pm 0.5V. Voltage range 3.3 is 3.3V \pm 0.3V

			T _A = +25°C, C _L = 50pF			T _A = -40°C C _L =			
Symbol	Parameter	V _{CC} (V) ⁽¹³⁾	Min.	Тур.	Max.	Min.	Max.	Units	
f _{MAX}	Maximum Clock Frequency	5.0	85			80		MHz	
t _{PLH} , t _{PHL}	Propagation Delay, CP to O _n	5.0	2.0	7.0	9.0	2.0	9.5	ns	
t _{PZL} , t _{PZH}	Output Enable Time	5.0	2.0	7.5	9.0	2.0	9.5	ns	
t _{PHZ} , t _{PLZ}	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns	
t_{OSHL}, t_{OSLH}	Output to Output Skew, CP to On ⁽¹⁴⁾	5.0		0.5	1.0		1.0	ns	

Notes:

13. Voltage range 5.0 is 5.0V \pm 0.5V.

14. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements for ACTQ

			$ \begin{array}{ c c c c c } T_A = +25^{\circ}C, & T_A = -40^{\circ}C \ to \ +85^{\circ}C, \\ C_L = 50 pF & C_L = 50 pF \end{array} $			
Symbol	Parameter	V _{CC} (V) ⁽¹⁵⁾	Тур.	Guaranteed Minimum		Units
t _S	Setup Time, HIGH or LOW, D _n to CP	5.0	0	3.0	3.0	ns
t _H	Hold Time, HIGH or LOW, D _n to CP	5.0	0	1.5	1.5	ns
t _H	CP Pulse Width, HIGH or LOW	5.0	2.0	4.0	4.0	ns

Note:

15. Voltage range 5.0 is 5.0V ± 0.5V

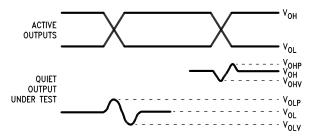
Capacitance

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 5.0V$	42.0	pF

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:


Hewlett Packard Model 8180A Word Generator

PC-163A Test Fixture

Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50pF, 500Ω .
- 2. Deskew the HFS generator so that no two channels have greater than 150ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- 3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

Notes:

- 16. V_{OHV} and V_{OLP} are measured with respect to ground reference.
- 17. Input pulses have the following characteristics: f = 1MHz, $t_r = 3ns$, $t_f = 3ns$, skew < 150ps.

Figure 1. Quiet Output Noise Voltage Waveforms

V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV} :

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable.
 Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

V_{ILD} and V_{IHD}:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

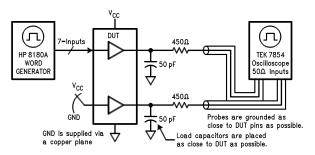
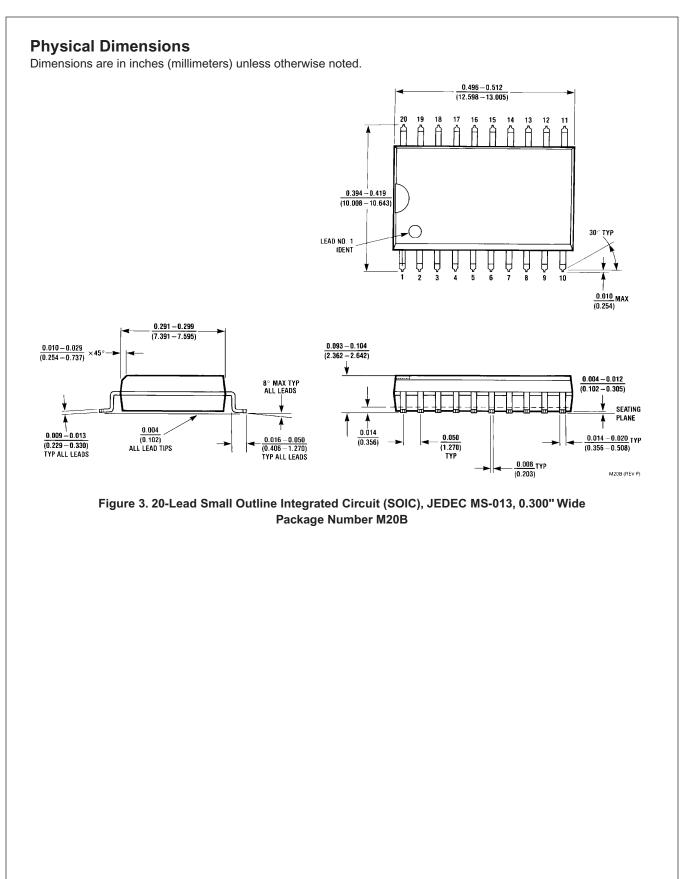
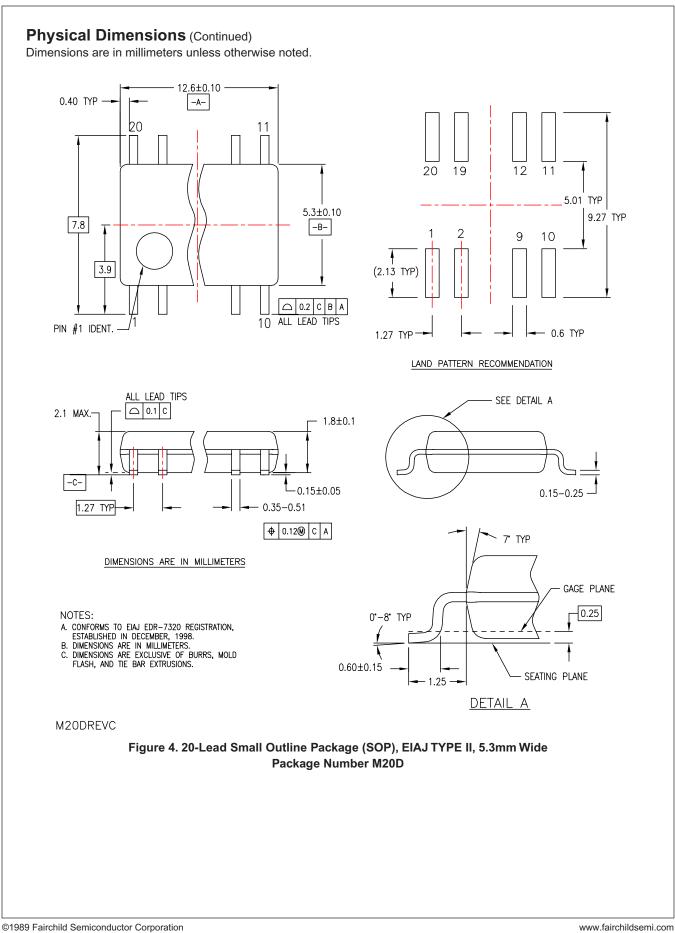
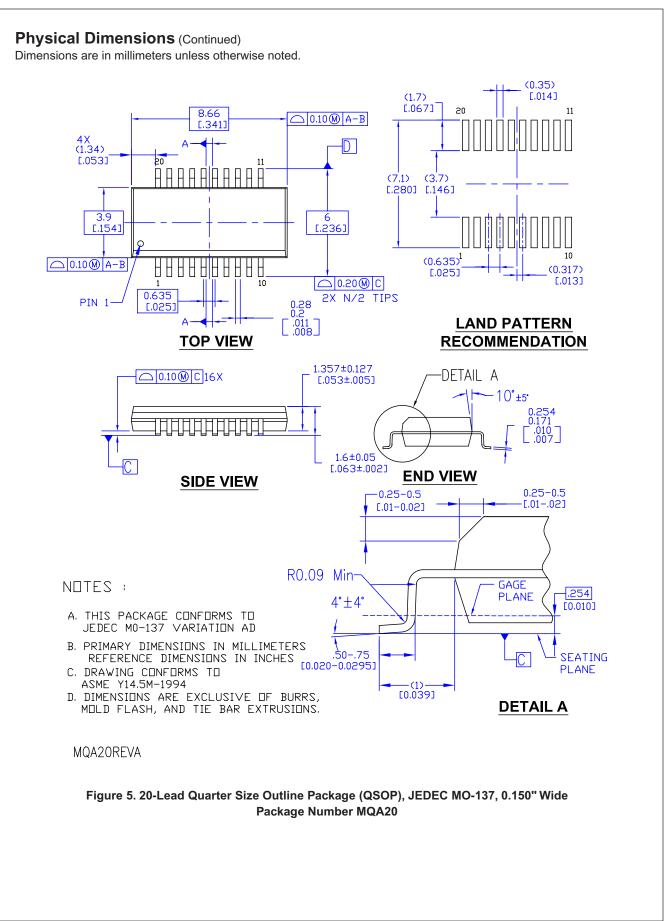





Figure 2. Simultaneous Switching Test Circuit

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACE $x^{\textcircled{0}}$ Across the board. Around the world. TM ActiveArray TM Bottomless TM Build it Now TM CoolFET TM CoolFET TM CROSSVOLT TM CTL TM Current Transfer Logic TM DOME TM E ² CMOS TM EcoSPARK [®] EnSigna TM FACT Quiet Series TM FACT [®] FAST [®] FAST [®] FAST TM FRFET [®] GlobalOptoisolator TM	HiSeC TM <i>i-Lo</i> TM ImpliedDisconnect TM IntelliMAX TM ISOPLANAR TM MICROCOUPLER TM MicroPak TM MICROWIRE TM MSX TM MSXPro TM OCX TM OCXPro TM OCXPro TM OPTOLOGIC [®] OPTOPLANAR [®] PACMAN TM POP TM Power220 [®] Power247 [®] PowerEdge TM	Programmable Active Droop [™] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] ScalarPump [™] SMART START [™] SMART START [™] SMART START [™] SUPF [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TCM [™] The Power Franchise [®]	TinyLogic [®] TINYOPTO™ TinyPower™ TruTranslation™ µSerDes™ UHC [®] UniFET™ VCX™ Wire™
FRFET [®] GlobalOptoisolator™ GTO™			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

Definition of Terms

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Advance Information	Formative or In Design			
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to impr design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

Rev. 124

74ACQ374, 74ACTQ374 Quiet Series[™] Octal D-Type Flip-Flop with 3-STATE Outputs

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.