

74ACTQ563PC Datasheet

www.digi-electronics.com

Manufacturer

DiGi Electronics Part Number

Manufacturer Product Number

Description

Detailed Description

74ACTQ563PC-DG

onsemi

74ACTQ563PC

IC D-TYPE TRANSP SGL 8:8 20DIP

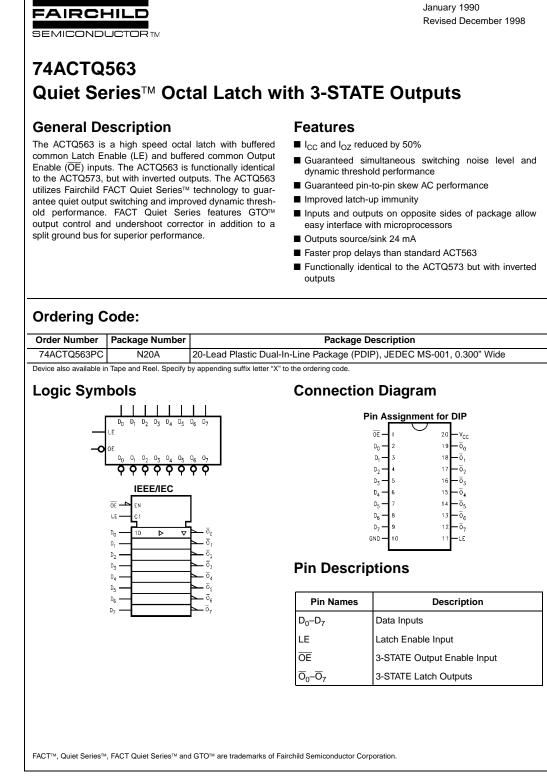
D-Type Transparent Latch 1 Channel 8:8 IC Tri-Stat e 20-PDIP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.



Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74ACTQ563PC	onsemi
Series:	Product Status:
74ACTQ	Obsolete
Logic Type:	Circuit:
D-Type Transparent Latch	8:8
Output Type:	Voltage - Supply:
Tri-State	4.5V ~ 5.5V
Independent Circuits:	Delay Time - Propagation:
1	1ns
Current - Output High, Low:	Operating Temperature:
24mA, 24mA	-40°C ~ 85°C
Mounting Type:	Package / Case:
Through Hole	20-DIP (0.300", 7.62mm)
Supplier Device Package:	Base Product Number:
20-PDIP	74ACTQ563

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

www.fairchildsemi.com

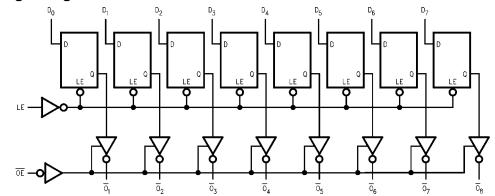
Functional Description

The ACTQ563 contains eight D-type latches with 3-STATE complementary outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on

the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When \overline{OE} is HIGH the buffers are in the high impedance mode but that does not interfere with entering new data into the latches.

Function Table

	Inputs		Internal Outputs		Function
OE	LE	D	q	ο	
Н	х	Х	х	Z	High-Z
н	н	L	н	Z	High-Z
н	н	н	L	Z	High-Z
н	L	Х	NC	Z	Latched
L	н	L	н	н	Transparent
L	н	н	L	L	Transparent
L	L	Х	NC	NC	Latched


H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial Z = High Impedance

NC = No Change

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{1} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	–0.5V to V_{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	\pm 50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	\pm 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
DC Latchup Source	
or Sink Current	\pm 300 mA

Junction Temperature (T_J) PDIP

Recommended Operating Conditions

4.5V to 5.5V
0V to V_{CC}
0V to V_{CC}
$-40^\circ C$ to $+85^\circ C$
125 mV/ns

74ACTQ563

140°C

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	Vcc	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
Symbol	Parameter	(V)	Тур	Gu	aranteed Limits	Units	Conditions
/ _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0		or $V_{CC} - 0.1V$
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8		or $V_{CC} - 0.1V$
V _{ОН}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$
	Output Voltage	5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	I _{OH} = -24 mA
		5.5		4.86	4.76		I _{OH} = - 24 mA (Note 2)
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1		$I_{OUT} = 50 \ \mu A$
	Output Voltage	5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μA	$V_I = V_{CC}, GND$
l _{oz}	Maximum 3-STATE	5.5		± 0.25	± 2.5	μA	$V_I = V_{IL}, V_{IH}$
	Leakage Current						$V_O = V_{CC}$, GND
I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
онр	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
lcc	Maximum Quiescent Supply Current	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$ or GND
V _{OLP}	Quiet Output	5.0	1.1	1.5		V	Figure 1, Figure 2
	Maximum Dynamic V _{OL}						(Note 4)(Note 5)
V _{OLV}	Quiet Output	5.0	-0.6	-1.2		V	Figure 1, Figure 2
	Minimum Dynamic V _{OL}						(Note 4)(Note 5)
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	1.9	2.2		V	(Note 4)(Note 6)
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	1.2	0.8		V	(Note 4)(Note 6)

Note 4: DIP package.

Note 5: Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND.

DC Electrical Characteristics (Continued) Note 6: Max number of data inputs (n) switching. (n-1) inputs switching 0V to 3V. Input-under-test switching; 3V to threshold (V_{ILD}), 0V to threshold (V_{ILD}), f = 1 MHz.

			$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
Symbol	Parameter	V _{cc}		$C_L = 50 \ pF$		C _L = 50 pF		Units
		(Note 7)	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay	3.3	2.5	8.5	11.5	2.5	12.0	ns
t _{PLH}	D _n to O _n	5.0	1.5	5.5	7.5	1.5	8.0	
t _{PLH}	Propagation Delay	3.3	2.5	8.5	13.0	2.5	13.5	ns
t _{PHL}	LE to O _n	5.0	2.0	6.0	8.5	2.0	9.0	
t _{PZL}	Output Enable Time	3.3	2.5	8.5	13.0	2.5	13.5	ns
t _{PZH}		5.0	1.5	6.0	8.5	1.5	9.0	
t _{PHZ}	Output Disable Time	3.3	1.0	9.0	14.5	1.0	15.0	ns
t _{PLZ}		5.0	1.0	6.5	9.5	1.0	10.0	
tOSHL	Output to Output Skew (Note 8)	3.3		1.0	1.5		1.5	ns
t _{OSLH}	D _n to O _n	5.0		0.5	1.0		1.0	

Note 7: Voltage Range 5.0 is 5.0V $\pm 0.5V$ and 3.3 is 3.3V \pm 0.3V.

Note 8: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Operating Requirements

		V _{cc}	T. =	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	(V)		50 pF	$C_L = 50 \text{ pF}$	Units
		(Note 9)		G	uaranteed Minimum	
t _S	Setup Time, HIGH or LOW	3.3	0	3.0	3.0	ns
	D _n to LE	5.0	0	3.0	3.0	
t _H	Hold Time, HIGH or LOW	3.3	0	1.5	1.5	ns
	D _n to LE	5.0	0	1.5	1.5	
t _W	LE Pulse Width, HIGH	3.3	2.0	4.0	4.0	ns
		5.0	2.0	4.0	4.0	

Note 9: Voltage Range 5.0 is 5.0V \pm 0.5V and 3.3V is 3.3 \pm 0.3V.

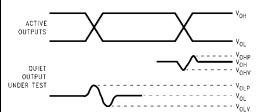
Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	42	pF	$V_{CC} = 5.0V$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:


Hewlett Packard Model 8180A Word Generator

PC-163A Test Fixture

Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50 pF, $500\Omega.$
- Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.

 V_{OHV} and V_{OLP} are measured with respect to ground reference. Input pulses have the following characteristics:

f = 1 MHz, t_r = 3 ns, t_f = 3 ns, skew < 150 ps.

- FIGURE 1. Quiet Output Noise Voltage Waveforms 5. Set the HFS generator input levels at 0V LOW and 3V
- HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with a n oscilloscope.

 V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV} :

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50 Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable. Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

 V_{ILD} and V_{IHD} :

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

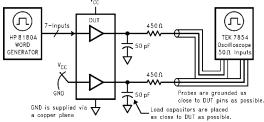
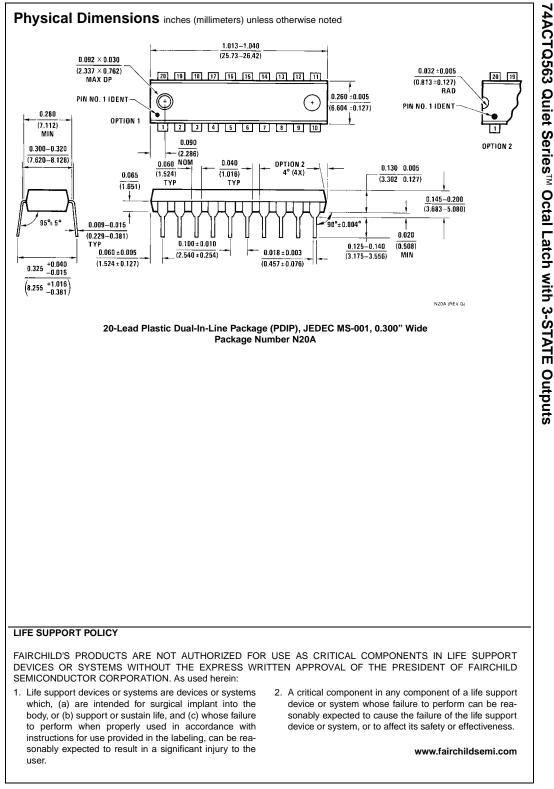



FIGURE 2. Simultaneous Switching Test Circuit

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.