

74F2244SC Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	74F2244SC-DG
Manufacturer	onsemi
Manufacturer Product Number	74F2244SC
Description	IC BUF NON-INVERT 5.5V 20SOIC
Detailed Description	Buffer, Non-Inverting 2 Element 4 Bit per Element 3 -State Output 20-SOIC

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

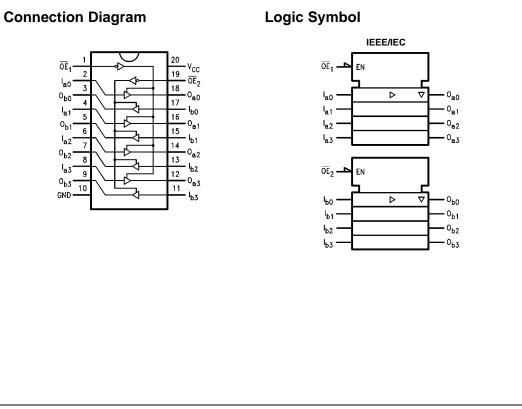
Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
	Manufacturer.
74F2244SC	onsemi
Series:	Product Status:
74F	Obsolete
Logic Type:	Number of Elements:
Buffer, Non-Inverting	2
Number of Bits per Element:	Input Type:
4	
Output Type:	Current - Output High, Low:
3-State	3mA, 12mA
Voltage - Supply:	Operating Temperature:
4.5V ~ 5.5V	0°C ~ 70°C (TA)
Mounting Type:	Package / Case:
Surface Mount	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package:	Base Product Number:
20-SOIC	74F2244

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

The F2244 is an octal buffer/line driver designed to drive the capacitive inputs of MOS memory drivers, address drivers, clock drivers and bus-oriented transmitters/receivers.


The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

- 3-STATE outputs drive bus lines or buffer memory address registers
- 12 mA source current
- 25Ω series resistors in outputs eliminate the need for external resistors.
- Designed to drive the capacitive inputs of MOS devices
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	Package Description
74F2244SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F2244MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F2244PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also sveilable	in Trans and Deal Orasit.	by expending the suffix letter "V" to the ordering code

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 1999 Fairchild Semiconductor Corporation DS009499.prf

74F2244

Unit Lo	Jnit Loading/Fan Out								
	Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}					
	$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Input (Active LOW)	1.0/1.667	20 µA/–1 mA					
	OE ₂	3-STATE Output Enable Input (Active HIGH)	1.0/1.667	20 µA/–1 mA					
	I _{an} , I _{bn}	Inputs	1.0/2.667 (Note 1)	20 µA/–1.6 mA					
	O _{an} ,O _{bn}	Outputs	750/20	–15 mA/12 mA					
Note 1: Worst	-case F2244 disat	bled							

Truth Table

OE ₁	l _{an}	O _{an}	OE ₂	I _{bn}	O _{bn}
Н	х	Z	Н	Х	Z
L	н	н	L	н	н
L	L	L	L	L	L

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Absolute Maximum Ratings(Note 2)

Storage Temperature	-65°C to +150°C	
Ambient Temperature under Bias	-55°C to +125°C	
Junction Temperature under Bias	-55°C to +150°C	
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V	
Input Voltage (Note 3)	-0.5V to +7.0V	
Input Current (Note 3)	-30 mA to +5.0 mA	
Voltage Applied to Output		
in HIGH State (with $V_{CC} = 0V$)		
Standard Output	–0.5V to V_{CC}	
3-STATE Output	-0.5V to +5.5V	
Current Applied to Output		
in LOW State (Max)	twice the rated I _{OL} (mA)	
ESD Last Passing Voltage (Min)	4000V	

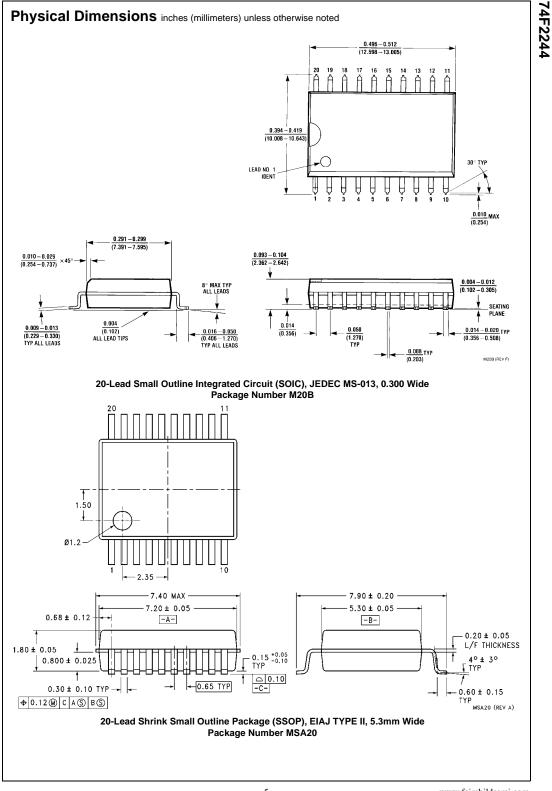
Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage 74F2244

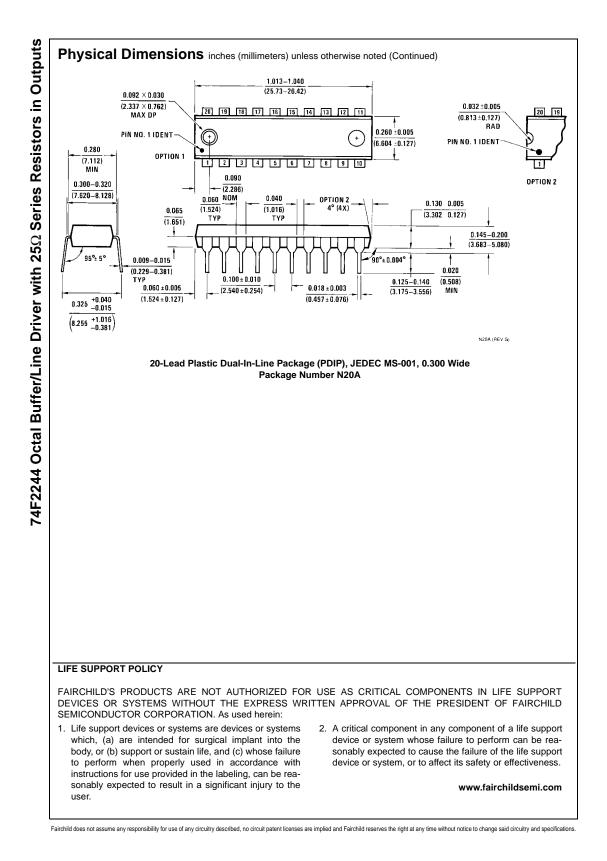
0°C to +70°C +4.5V to +5.5V

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC}	2.4			V	Min	I _{OH} = -3 mA
		10% V _{CC}	2.0					I _{OH} = -15 mA
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage				0.50	V	Min	I _{OL} = 1 mA
					0.75			$I_{OL} = 12 \text{ mA}$
IIH	Input HIGH Current				5.0	μA	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdow	n Test			7.0	μA	Max	V _{IN} = 7.0V
I _{CEX}	Output HIGH Leakage Current	t			50	μA	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test							All other pins grounded
I _{OD}	Output Leakage				3.75	μA	0.0	$V_{IOD} = 150 \text{ mV}$
	Circuit Current							All other pins grounded
IIL	Input LOW Current				-1.0	mA	Max	$V_{IN} = 0.5V (\overline{OE}_1, \overline{OE}_2, OE_2)$
					-1.6			$V_{IN} = 0.5V (I_n)$
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μA	Max	$V_{OUT} = 0.5V$
I _{OS}	Output Short-Circuit Current		-100		-225	mA	Max	V _{OUT} = 0V
ICCH	Power Supply Current			40	60	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			60	90	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			60	90	mA	Max	V _O = HIGH Z


74F224	4
74F22	7
74F:	ž
74	Ъ.
~	4
	~

AC Electrical Characteristics

Symbol	Parameter		T _A = +25°C V _{CC} = +5.0V C _L = 50 pF		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $C_L = 50 \text{ pF}$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.5		7.0	2.0	6.5	1.5	7.0	ns
t _{PHL}	Data to Output	2.5		8.0	2.0	7.0	2.0	8.0	
t _{PZH}	Output Enable Time	1.5		9.0	2.0	7.0	1.0	9.5	
t _{PZL}		2.5		11.5	2.0	8.5	2.5	12.0	ns
t _{PHZ}	Output Disable Time	1.5		9.0	2.0	7.0	1.0	9.5	
t _{PLZ}		1.5		8.5	2.0	7.5	1.5	9.5	

5

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.