

74F374SCX Datasheet

www.digi-electronics.com

 DiGi Electronics Part Number
 74F374SCX-DG

 Manufacturer
 onsemi

 Manufacturer Product Number
 74F374SCX

 Description
 IC FF D-TYPE SNGL 8BIT 20SOIC

 Detailed Description
 Flip Flop 1 Element D-Type 8 Bit Positive Edge 20-S OIC (0.295", 7.50mm Width)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74F374SCX	onsemi
Series:	Product Status:
74F	Obsolete
Function:	Type:
Standard	D-Type
Output Type:	Number of Elements:
Tri-State, Non-Inverted	1
Number of Bits per Element:	Clock Frequency:
В	140 MHz
Max Propagation Delay @ V, Max CL:	Trigger Type:
3.5ns @ 5V, 50pF	Positive Edge
Current - Output High, Low:	Voltage - Supply:
3mA, 24mA	4.5V ~ 5.5V
Current - Quiescent (Iq):	Operating Temperature:
86 mA	0°C ~ 70°C (TA)
Mounting Type:	Supplier Device Package:
Surface Mount	20-SOIC
Package / Case:	Base Product Number:
20-SOIC (0.295", 7.50mm Width)	74F374

Environmental & Export classification

Moisture Sensitivity Level (MSL):	
1 (Unlimited)	
ECCN:	
EAR99	

REACH Status:
REACH Unaffected
HTSUS:
8542.39.0001

FAIRCHILD

SEMICONDUCTOR

74F374 **Octal D-Type Flip-Flop with 3-STATE Outputs**

General Description

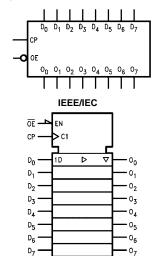
Features

The 74F374 is a high-speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and 3-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (OE) are common to all flipflops.

Revised September 2000

May 1988

Buffered positive edge-triggered clock


Edge-triggered D-type inputs

- 3-STATE outputs for bus-oriented applications
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	Package Description
74F374SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F374SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F374MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F374PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	/ by appending the suffix letter "X" to the ordering code.

Logic Symbols

07

Connection Diagram

ŌĒ —	, O	6	
	1	20	-v _{cc}
0 ₀ -	2	19	-0 ₇
D ₀ —	3	18	— D ₇
D ₁ —	4	17	— D ₆
0 ₁ -	5	16	-0 ₆
0 ₂ -	6	15	-0 ₅
D ₂ —	7	14	— D ₅
D3 -	8	13	— D₄
03-	9	12	-0 ₄
GND —	10	11	— CP
			I

© 2000 Fairchild Semiconductor Corporation DS009524 www.fairchildsemi.com

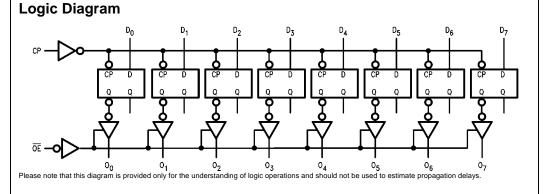
Unit Loading/Fan Out

U			
D . N.	Description	U.L.	Input I _{IH} /I _{IL}
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}
D ₀ –D ₇	Data Inputs	1.0/1.0	20 µA/–0.6 mA
СР	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/–0.6 mA
OE	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA
O ₀ -O ₇	3-STATE Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)

Functional Description

The 74F374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affected the state of the flip-flops.

Truth Table


	Inputs		Internal	Output
D _n	СР	OE	Register	On
н	~	L	Н	Н
L	~	L	L	L
х	х	н	х	Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial Z = High Impedance

LOW-to-HIGH Clock Transition

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

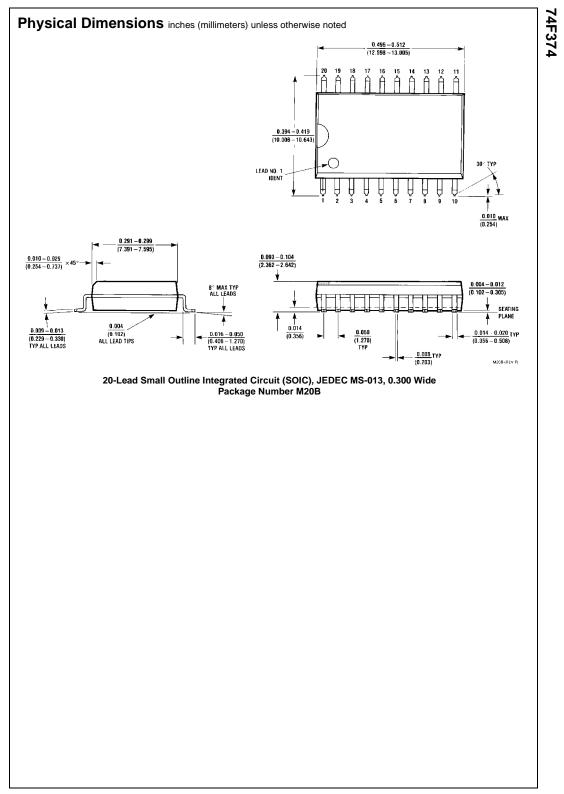
Recommended Operating Conditions

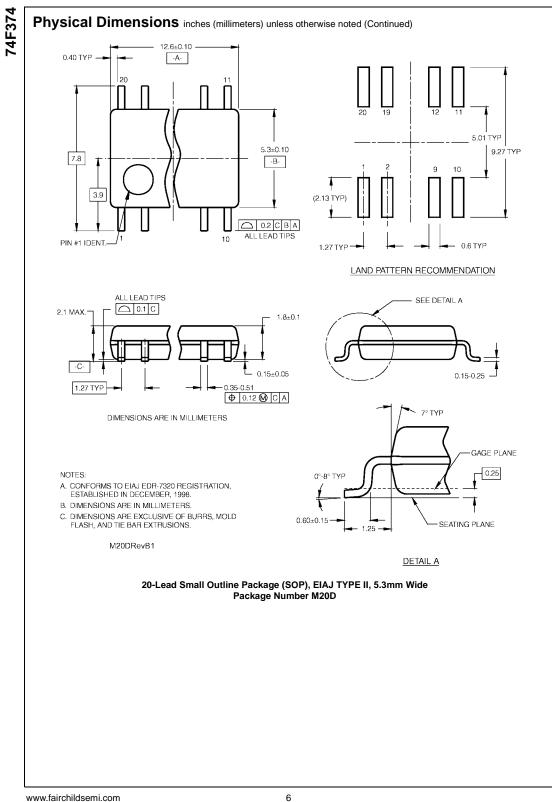
Free Air Ambient Temperature Supply Voltage 74F374

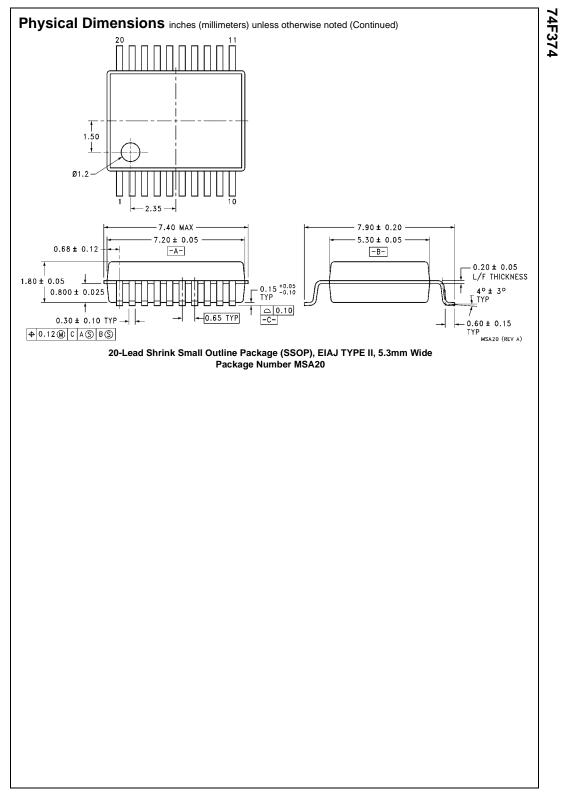
0°C to +70°C +4.5V to +5.5V

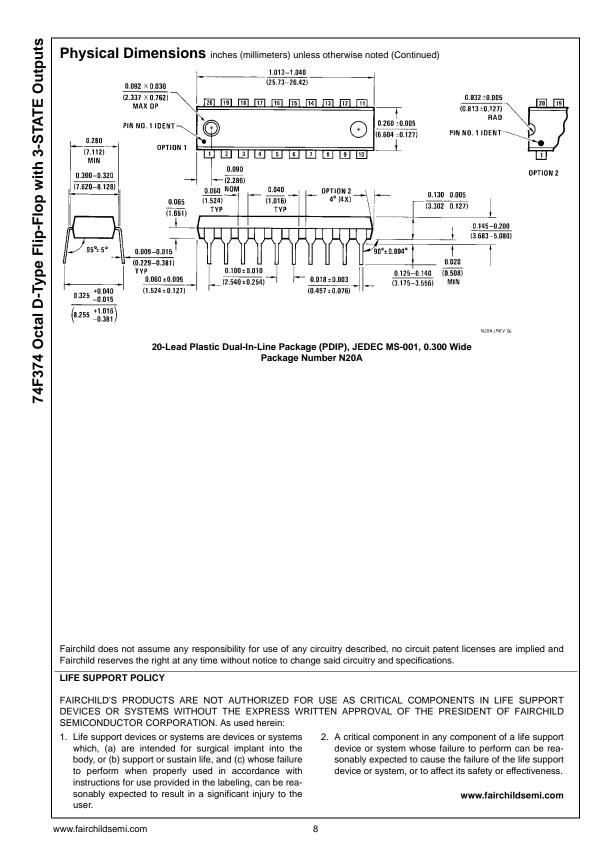
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4			v	Min	$I_{OH} = -3 \text{ mA}$
		5% V _{CC}	2.7			v	IVIIN	$I_{OH} = -1 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
IIH	Input HIGH				5.0	A	Max	V 0.7V
	Current				5.0	μA	IVIAX	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΑ	IVIAX	v _{IN} = 7.0v
ICEX	Output HIGH				50	A	Max	V V
	Leakage Current				50	μA	IVIAX	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
I _{OZH}	Output Leakage Current				50	μA	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Current				-50	μA	Max	$V_{OUT} = 0.5V$
l _{os}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test				500	μA	0.0V	V _{OUT} = 5.25V
I _{CCZ}	Power Supply Current			55	86	mA	Max	V _O = HIGH Z


Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0$ $C_L = 50 \text{ pF}$	/	V _{CC} =	to +125°C +5.0V 50 pF	V _{CC} =	: to +70°C : +5.0V 50 pF	Units
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	140		60		70		MHz
t _{PLH}	Propagation Delay	4.0	6.5	8.5	4.0	10.5	4.0	10.0	
t _{PHL}	CP to O _n	4.0	6.5	8.5	4.0	11.0	4.0	10.0	ns
t _{PZH}	Output Enable Time	2.0	9.0	11.5	2.0	14.0	2.0	12.5	
t _{PZL}		2.0	5.8	7.5	2.0	10.0	2.0	8.5	
t _{PHZ}	Output Disable Time	2.0	5.3	7.0	2.0	8.0	2.0	8.0	ns
t _{PLZ}		1.5	4.3	5.5	1.5	7.5	1.5	6.5	


AC Operating Requirements

		$T_A = +25^{\circ}C$		$T_{A}=-55^{\circ}C$ to $+125^{\circ}C$		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		
Symbol	Parameter	V _{CC} =	+ 5.0V	V _{CC} =	+ 5.0V	V _{CC} =	+5.0V	Units
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.0		2.5		2.0		
t _S (L)	D _n to CP	2.0		2.0		2.0		ns
t _H (H)	Hold Time, HIGH or LOW	2.0		2.0		2.0		115
t _H (L)	D _n to CP	2.0		2.5		2.0		
t _W (H)	CP Pulse Width	7.0		7.0		7.0		ns
t _W (L)	HIGH or LOW	6.0		6.0		6.0		115

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.