

74LVQ125SJ Datasheet

www.digi-electronics.com

https://www.DiGi-Electronics.com

DiGi Electronics Part Number 74LVQ125SJ-DG

Manufacturer onsemi

Manufacturer Product Number 74LVQ125SJ

Description IC BUFFER NON-INVERT 3.6V 14SOP

Detailed Description Buffer, Non-Inverting 4 Element 1 Bit per Element 3

-State Output 14-SOP

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74LVQ125SJ	onsemi
Series:	Product Status:
74LVQ	Obsolete
Logic Type:	Number of Elements:
Buffer, Non-Inverting	4
Number of Bits per Element:	Input Type:
1	
Output Type:	Current - Output High, Low:
3-State	12mA, 12mA
Voltage - Supply:	Operating Temperature:
2V ~ 3.6V	-40°C ~ 85°C (TA)
Mounting Type:	Package / Case:
Surface Mount	14-SOIC (0.209", 5.30mm Width)
Supplier Device Package:	Base Product Number:
14-SOP	74LVQ125

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

February 1992 Revised June 2001

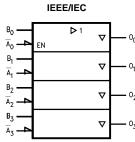
74LVQ125

Low Voltage Quad Buffer with 3-STATE Outputs

General Description

The LVQ125 contains four independent non-inverting buffers with 3-STATE outputs.

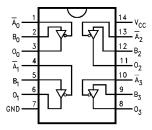
Features


- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- \blacksquare Guaranteed incident wave switching into 75 $\!\Omega$

Ordering Code:

Order Number	Package Number	Package Description
74LVQ125SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LVQ125SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.


Logic Symbol

Pin Descriptions

Pin Names	Description
\overline{A}_n , B_n	Inputs
On	Outputs

Connection Diagram

Truth Table

Inpu	its	Output
Ā _n	B _n	On
L	L	L
L	Н	Н
Н	Χ	Z

- H = HIGH Voltage Level L = LOW Voltage Level Z = HIGH Impedance

Absolute Maximum Ratings(Note 1)

DC Input Voltage (V_I) -0.5V to V_{CC} + 0.5V

DC Output Diode Current (I_{OK})

 $\begin{aligned} \text{V}_{\text{O}} &= -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{O}} &= \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \end{aligned}$

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) ± 50 mA

DC V_{CC} or Ground Current

 $(I_{CC} \text{ or } I_{GND})$ ±200 mA

Storage Temperature (T_{STG}) -65°C to +150°C

DC Latch-Up Source or

Sink Current ±100 mA

Recommended Operating Conditions (Note 2)

Minimum Input Edge Rate (ΔV/Δt)

V_{IN} from 0.8V to 2.0V

 $V_{CC} @ 3.0V$ 125 mV/ns

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A =$	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Syllibol	Farameter	(V)	Тур	Gı	Guaranteed Limits			
V _{IH}	Minimum High Level	3.0	1.5	2.0	2.0	V	V _{OUT} = 0.1V	
	Input Voltage	3.0	1.5	2.0	2.0	V	or V _{CC} – 0.1V	
V _{IL}	Maximum Low Level	3.0	1.5	0.8	0.8	V	V _{OUT} = 0.1V	
	Input Voltage	3.0	1.5	0.0	0.0	V	or V _{CC} – 0.1V	
V _{OH}	Minimum High Level	3.0	2.99	2.9	2.9	V	$I_{OUT} = -50 \mu A$	
	Output Voltage	3.0		2.58	2.48	V	$V_{IN} = V_{IL}$ or V_{IH} (Note 3)	
		0.0		2.00	2.40	•	$I_{OH} = -12 \text{ mA}$	
V _{OL}	Maximum Low Level	3.0	0.002	0.1	0.1	٧	I _{OUT} = 50 μA	
	Output Voltage	3.0		0.36	0.44	V	$V_{IN} = V_{IL}$ or V_{IH} (Note 3)	
		0.0		0.00	0	•	I _{OL} = 12 mA	
I _{IN}	Maximum Input	3.6		±0.1	±1.0	μА	$V_I = V_{CC}$	
	Leakage Current					Ĺ	GND	
l _{OZ}	Maximum 3-STATE						V_{I} (OE) = V_{IL} , V_{IH}	
	Leakage Current	3.6		±0.25	±2.5	μΑ	$V_I = V_{CC}$, GND	
							$V_O = V_{CC}$, GND	
I _{OLD}	Minimum Dynamic (Note 4)	3.6			36	mA	V _{OLD} = 0.8V Min (Note 5)	
I _{OHD}	Output Current	3.6			-25	mA	V _{OHD} = 2.0V Min (Note 5)	
Icc	Maximum Quiescent	Maximum Quiescent 3,6 4,0 40,0		40.0	μА	$V_{IN} = V_{CC}$		
	Supply Current	0.0		4.0	40.0	μιτ	or GND	
V _{OLP}	Quiet Output	3.3	0.6	1.0		V	(Note 6)(Note 7)	
	Maximum Dynamic V _{OL}	0.0	0.0	1.0		•		
V _{OLV}	Quiet Output	3.3	-0.6	-1.0		V	(Note 6)(Note 7)	
	Minimum Dynamic V _{OL}	0.0	0.0	1.0		•	(Note b)(Note 1)	
V _{IHD}	Maximum High Level	3.3	1.7	2.0		V	(Note 6)(Note 8)	
	Dynamic Input Voltage	5.5	1.7	2.0		v	(14010 0)(14010 0)	
V _{ILD}	Maximum Low Level	3.3	1.5	0.8		V	(Note 6)(Note 8)	
	Dynamic Input Voltage	5.5	2.	5.0		•	(11010 0)(11010 0)	

Note 3: All outputs loaded; thresholds on input associated with output under test.

Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

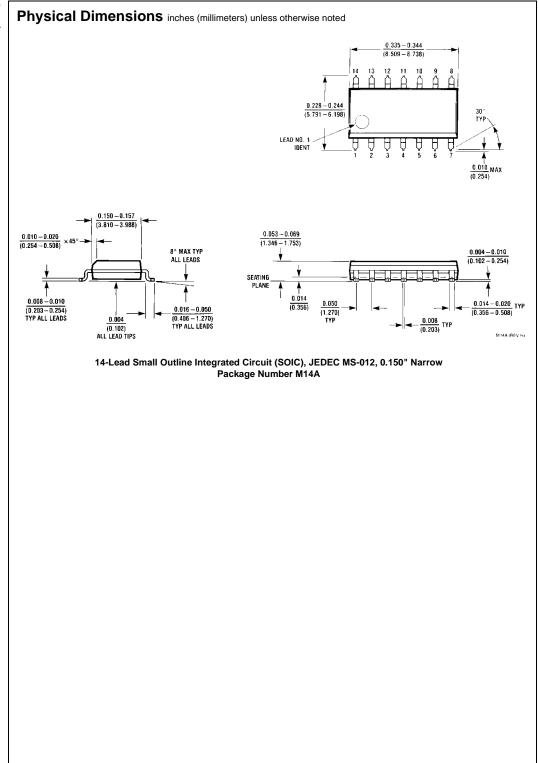
Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ.

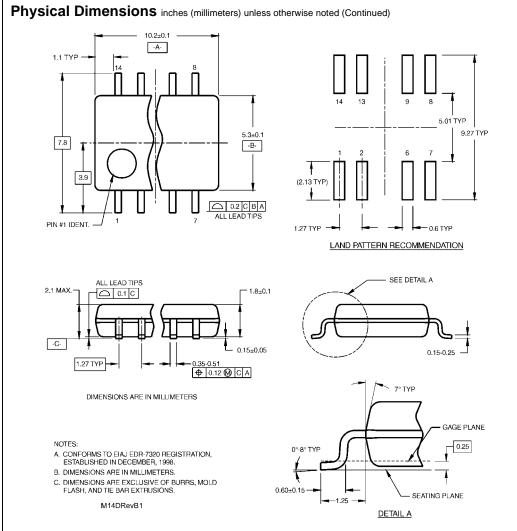
Note 6: Worst case package.

Note 7: Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V; one output at GND.

Note 8: Max number of Data Inputs (n) switching. (n - 1) inputs switching 0V to 3.3V. Input-under-test switching: 3.3V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) , f = 1 MHz.

AC Electrical Characteristics


				$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C		
Symbol Parameter		V _{CC}	$C_L = 50 \text{ pF}$			$C_L = 50 \ pF$		Units	
		(V)	Min	Тур	Max	Min	Max	1	
t _{PLH}	Propagation Delay	2.7	1.0	7.8	12.7	1.0	14.0	ns	
	Data to Output	3.3 ± 0.3	1.0	6.5	9.0	1.0	10.0	115	
t _{PHL}	Propagation Delay	2.7	1.0	7.8	12.7	1.0	14.0	no	
	Data to Output	3.3 ± 0.3	1.0	6.5	9.0	1.0	10.0	ns	
t _{PZH}	Output Enable Time	2.7	1.0	7.2	14.8	1.0	16.0	ns	
		3.3 ± 0.3	1.0	6.0	10.5	1.0	11.0		
t _{PZL}	Output Enable Time	2.7	1.0	9.0	14.0	1.0	16.0	no	
		3.3 ± 0.3	1.0	7.5	10.0	1.0	11.0	ns	
t _{PHZ}	Output Disable Time	2.7	1.0	9.0	14.0	1.0	15.0	no	
		3.3 ± 0.3	1.0	7.5	10.0	1.0	10.5	ns	
t _{PLZ}	Output Disable Time	2.7	1.0	9.0	14.8	1.0	16.5		
		3.3 ± 0.3	1.0	7.5	10.5	1.0	11.5	ns	
t _{OSHL} ,	Output to Output Skew (Note 9)	2.7		1.0	1.5		1.5	ns	
t _{OSLH}	Data to Output	3.3 ± 0.3		1.0	1.5		1.5		


Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = Open
C _{PD} (Note 10)	Power Dissipation Capacitance	34	pF	V _{CC} = 3.3V

Note 10: C_{PD} is measured at 10 MHz.

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com