

74LVX14MTCX Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number 74LVX14MTCX-DG

Manufacturer onsemi

Manufacturer Product Number 74LVX14MTCX

Description IC INVERTER 6CH 1-INP 14TSSOP

Detailed Description Inverter IC 6 Channel Schmitt Trigger 14-TSSOP

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
74LVX14MTCX	onsemi
Series:	Product Status:
74LVX	Active
Logic Type:	Number of Circuits:
Inverter	6
Number of Inputs:	Features:
1	Schmitt Trigger
Voltage - Supply:	Current - Quiescent (Max):
2V ~ 3.6V	2 μΑ
Current - Output High, Low:	Input Logic Level - Low:
4mA, 4mA	0.9V
Input Logic Level - High:	Max Propagation Delay @ V, Max CL:
2.2V	14.1ns @ 3.3V, 50pF
Operating Temperature:	Mounting Type:
-40°C ~ 85°C	Surface Mount
Supplier Device Package:	Package / Case:
14-TSSOP	14-TSSOP (0.173", 4.40mm Width)
Base Product Number:	
74LVX14	

Environmental & Export classification

8542.39.0001

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Low Voltage Hex Inverter with Schmitt Trigger Input

74LVX14

General Description

The LVX14 contains six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter–free output signals. In addition, they have a greater noise margin than conventional inverters.

The LVX14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0 V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

The inputs tolerate voltages up to 6.5 V allowing the interface of 5 V systems to 3 V systems.

Features

- Input Voltage Level Translation From 5 V to 3 V
- Ideal For Low Power/Low Noise 3.3 V Applications
- Guaranteed Simultaneous Switching Noise Level and Dynamic Threshold Performance
- These Devices are Pb-Free and Halide Free

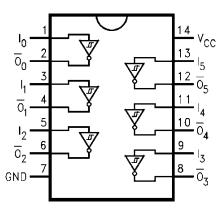


Figure 1. Connection Diagram

PIN DESCRIPTION

Pin Names	Description
In	Inputs
\overline{O}_n	Outputs

TRUTH TABLE

Input	Output
Α	ō
L	Н
Н	L

1

TSSOP-14 DT SUFFIX CASE 948G

MARKING DIAGRAM

XXX = Specific Device Code A = Assembly Location

WL, L = Wafer Lot Y = Year Ww, W = Work Week • = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

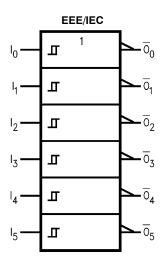


Figure 2. Logic Symbol

74LVX14

ABSOLUTE MAXIMUM RATINGS (The absolute maximum ratings are stress ratings only.)

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5 V to +6.5 V
I _{IK}	DC Input Diode Current, V _I = -0.5 V	–20mA
V _I	DC Input Voltage	–0.5 V to 6.5 V
lok	DC Output Diode Current V _O = -0.5 V	–20 mA
	$V_{O} = V_{CC} + 0.5 V$	+20 mA
Vo	DC Output Voltage	–0.5 V to V_{CC} +0.5 V
Io	DC Output Source or Sink Current	±25 mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	±50 mA
T _{STG}	Storage Temperature	−65°C to +150°C
P _D	Power Dissipation	833 mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS (Note 1)

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0 V to 3.6 V
VI	Input Voltage	0 V to 5.5 V
Vo	Output Voltage	0 V to V _{CC}
T _A	Operating Temperature	−40°C to +85°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. Unused inputs must be held HIGH or LOW. They may not float.

DC CHARACTERISTICS

					T _A = +25°C	;	T _A = −40°	C to 85°C	
Symbol	Parameter	V _{CC}	Conditions	Min	Тур	Max	Min	Max	Unit
V _{T+}	Positive Threshold	3.0	-	-	-	2.2	_	2.2	V
V_{T-}	Negative Threshold	3.0	-	0.9	-	-	0.9	-	V
V _H	Hysteresis	3.0	-	0.3	-	1.2	0.3	1.2	V
V _{OH}	HIGH Level Output	2.0	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = -50 \mu A$	1.9	2.0	-	1.9	-	V
	Voltage	3.0	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = -50 \mu A$	2.9	3.0	-	2.9	-	
			$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = -4$ mA	2.58	-	-	2.48	-	
V _{OL}	LOW Level Output	2.0	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = 50 \mu A$	-	0.0	0.1	=	0.1	V
	Voltage	3.0	$V_{IN} = V_{IL}$ or V_{IH} , $I_{OH} = 50 \mu A$	-	0.0	0.1	=	0.1	
			V _{IN} = V _{IL} or V _{IH} , I _{OH} = 4 mA	-	-	0.36	=	0.44	
I _{IN}	Input Leakage Current	3.6	V _{IN} = 5.5 V or GND	_	-	±0.1	-	±1.0	μΑ
I _{CC}	Quiescent Supply Current	3.6	$V_{IN} = V_{CC}$ or GND	ı	=	2.0	-	0	μΑ

74LVX14

NOISE CHARACTERISTICS (Note 2)

				T _A = 25°C		
Symbol	Parameter	V _{CC} (V)	C _L (pF)	Тур	Limits	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	50	0.3	0.5	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	50	-0.3	-0.5	V
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3	50	-	2.0	V
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3	50	-	0.8	V

^{2.} Input $t_r = t_f = 3$ ns.

AC ELECTRICAL CHARACTERISTICS

				T _A = +25°C		T _A = -40°C to 85°C			
Symbol	Parameter	V _{CC} (V)	C _L (pF)	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay Time	2.7	15 50	-	8.7 11.2	16.3 19.8	1.0 1.0	19.5 23.0	ns
		3.3 ±0.3	15 50	- -	6.8 9.3	10.6 14.1	1.0 1.0	12.5 16.0	
T _{OSLH} ,	Output to Output Skew (Note 3)	2.7	50	-	-	1.5	-	1.5	ns
^t oshl		3.3		-	-	1.5	-	1.5	

^{3.} Parameter guaranteed by design $t_{OSLH} = |t_{PLHm} - t_{PLHn}|$, $t_{OSHL} = |t_{PHLm} - t_{PHLn}|$.

CAPACITANCE

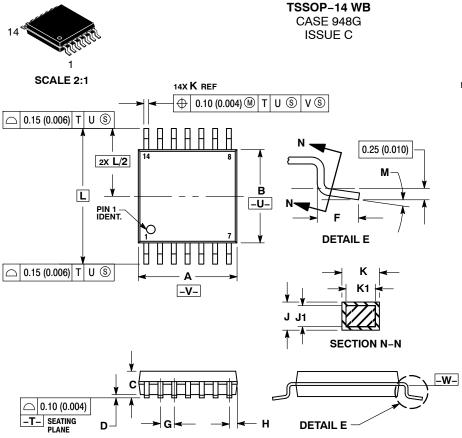
		T _A = +25°C		T _A = -40°C to 85°C			
Symbol	Parameter	Min	Тур	Max	Min	Max	Unit
C _{IN}	Input Capacitance	_	4	10	-	10	pF
C _{PD}	Power Dissipation Capacitance (Note 4)	-	21	-	-	-	pF

C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:

(eq. 1)
$$I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{IN} \times I_{CC}}{6 \text{ (per Gate)}}$$

ORDERING INFORMATION

Part Number	Package	Marking	Shipping [†]
74LVX14MTCX	TSSOP-14	LVX 14	2500 Units / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*-}Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

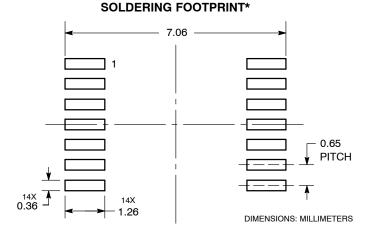
- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD

DATE 17 FEB 2016


- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR DEFERENCE ONLY
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0 °	8 °	0 °	8 °	

RECOMMENDED

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot = Year = Work Week W

= Pb-Free Package (Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1

onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com