

BC557BRL1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number BC557BRL1G-DG

Manufacturer onsemi

Manufacturer Product Number BC557BRL1G

Description TRANS PNP 45V 0.1A TO92

Detailed Description Bipolar (BJT) Transistor PNP 45 V 100 mA 320MHz 6

25 mW Through Hole TO-92 (TO-226)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

BC557

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
BC557BRL1G	onsemi
Series:	Product Status:
	Obsolete
Transistor Type:	Current - Collector (Ic) (Max):
PNP	100 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, Ic:
45 V	650mV @ 5mA, 100mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ Ic, Vce:
100nA	180 @ 2mA, 5V
Power - Max:	Frequency - Transition:
625 mW	320MHz
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-226-3, TO-92-3 Long Body (Formed Leads)	TO-92 (TO-226)
Base Product Number:	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8541.21.0075

Amplifier Transistors

PNP Silicon

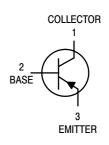
Features

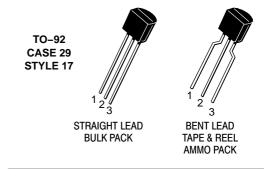
• Pb-Free Packages are Available*

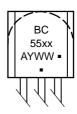
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage BC5 BC5 BC5	557	-65 -45 -30	Vdc
Collector - Base Voltage BC5 BC5 BC5	557	-80 -50 -30	Vdc
Emitter - Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous – Peak	I _C	-100 -200	mAdc
Base Current – Peak	I _{BM}	-200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

xx = 6B, 7A, 7B, 7C, or 8B A = Assembly Location

Y = Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage (I _C = -2.0 mAdc, I _B = 0)	BC556 BC557 BC558	V _{(BR)CEO}	-65 -45 -30	- - -	- - -	V
Collector – Base Breakdown Voltage ($I_C = -100 \mu Adc$)	BC556 BC557 BC558	V _{(BR)CBO}	-80 -50 -30	- - -	- - -	V
Emitter – Base Breakdown Voltage ($I_E = -100 \mu Adc, I_C = 0$)	BC556 BC557 BC558	$V_{(BR)EBO}$	-5.0 -5.0 -5.0	- - -		V
Collector-Emitter Leakage Current (V _{CES} = -40 V) (V _{CES} = -20 V) (V _{CES} = -20 V, T _A = 125°C)	BC556 BC557 BC558 BC556 BC557	I _{CES}	- - - -	-2.0 -2.0 -2.0 -	-100 -100 -100 -4.0 -4.0	nA μA
	BC558		_	_	-4.0	
ON CHARACTERISTICS DC Current Gain $(I_C = -10 \mu Adc, V_{CE} = -5.0 V)$	A Series Device B Series Devices	h _{FE}		90 150		_
$(I_C = -2.0 \text{ mAdc}, V_{CE} = -5.0 \text{ V})$ $(I_C = -100 \text{ mAdc}, V_{CE} = -5.0 \text{ V})$	C Series Devices BC557 A Series Device B Series Devices C Series Devices A Series Device B Series Devices		120 120 120 180 420 -	270 - 170 290 500 120 180	800 220 460 800 –	
Collector – Emitter Saturation Voltage ($I_C = -10$ mAdc, $I_B = -0.5$ mAdc) ($I_C = -10$ mAdc, $I_B = \text{see Note 1}$) ($I_C = -100$ mAdc, $I_B = -5.0$ mAdc)	C Series Devices	V _{CE(sat)}	- - -	-0.075 -0.3 -0.25	-0.3 -0.6 -0.65	V
Base – Emitter Saturation Voltage ($I_C = -10$ mAdc, $I_B = -0.5$ mAdc) ($I_C = -100$ mAdc, $I_B = -5.0$ mAdc)		V _{BE(sat)}		-0.7 -1.0		V
Base–Emitter On Voltage ($I_C = -2.0$ mAdc, $V_{CE} = -5.0$ Vdc) ($I_C = -10$ mAdc, $V_{CE} = -5.0$ Vdc)		V _{BE(on)}	-0.55 -	-0.62 -0.7	-0.7 -0.82	V
SMALL-SIGNAL CHARACTERISTICS						
Current – Gain – Bandwidth Product ($I_C = -10$ mA, $V_{CE} = -5.0$ V, $f = 100$ MHz)	BC556 BC557 BC558	f⊤	_ _ _	280 320 360	- - -	MHz
Output Capacitance $(V_{CR} = -10 \text{ V}, I_C = 0, f = 1.0 \text{ MHz})$		C_{ob}	-	3.0	6.0	pF
Noise Figure (I _C = -0.2 mAdc, V _{CE} = -5.0 V, R _S = 2.0 k Ω , f = 1.0 kHz, Δ f = 200 Hz)	BC556 BC557 BC558	NF	- - -	2.0 2.0 2.0	10 10 10	dB
Small–Signal Current Gain ($I_C = -2.0 \text{ mAdc}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz}$)	BC557 A Series Device B Series Devices C Series Devices	h _{fe}	125 125 240 450	- - - -	900 260 500 900	_

^{1.} $I_C = -10$ mAdc on the constant base current characteristics, which yields the point $I_C = -11$ mAdc, $V_{CE} = -1.0$ V.

BC557/BC558

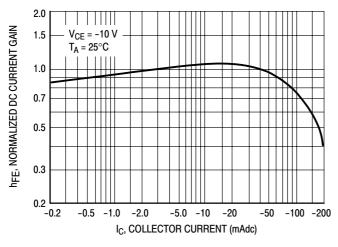


Figure 1. Normalized DC Current Gain

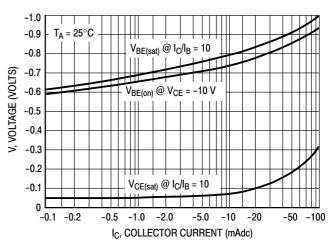


Figure 2. "Saturation" and "On" Voltages

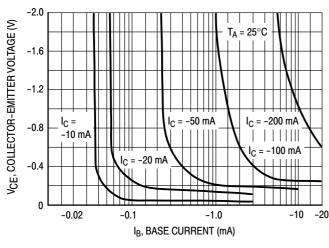


Figure 3. Collector Saturation Region

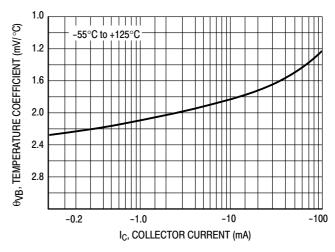


Figure 4. Base-Emitter Temperature Coefficient

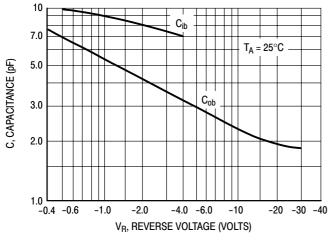


Figure 5. Capacitances

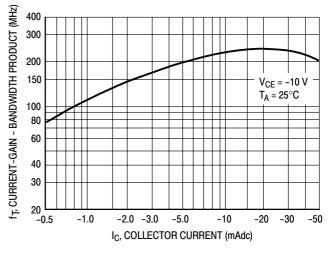


Figure 6. Current-Gain - Bandwidth Product

BC556

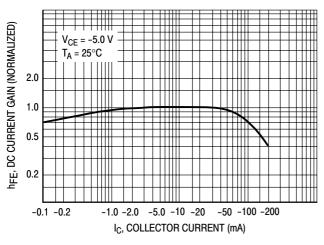


Figure 7. DC Current Gain

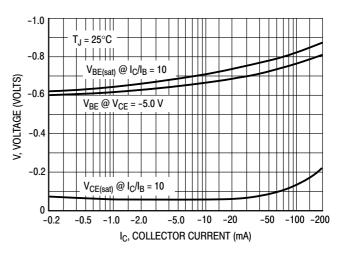


Figure 8. "On" Voltage

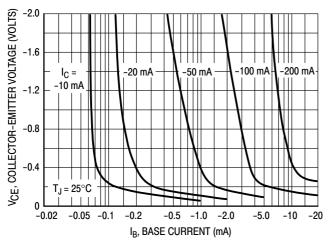


Figure 9. Collector Saturation Region

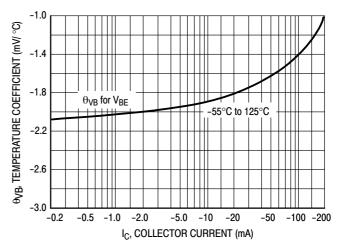


Figure 10. Base-Emitter Temperature Coefficient

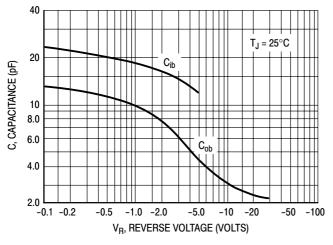


Figure 11. Capacitance

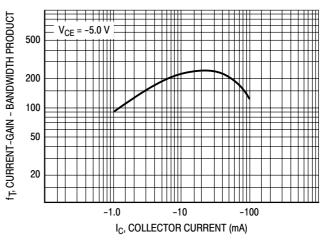


Figure 12. Current-Gain - Bandwidth Product

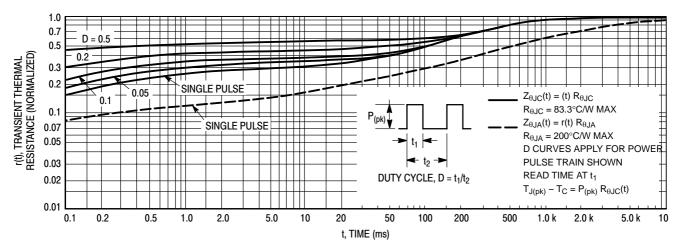


Figure 13. Thermal Response

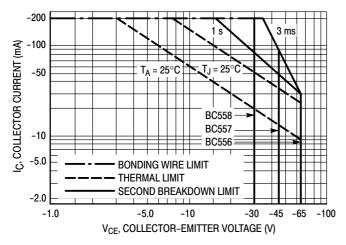
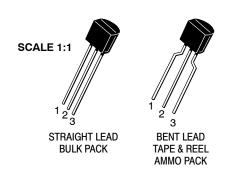


Figure 14. Active Region - Safe Operating Area

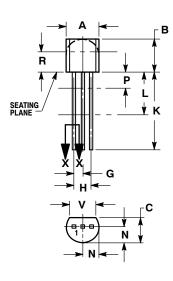
The safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}C$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

ORDERING INFORMATION


Device	Package	Shipping [†]
BC556BG	TO-92 (Pb-Free)	5000 Units / Bulk
BC556BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC557AZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC557BG	TO-92 (Pb-Free)	5000 Units / Bulk
BC557BRL1	TO-92	2000 / Tape & Reel
BC557BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
BC557BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC557CG	TO-92 (Pb-Free)	5000 Units / Bulk
BC557CZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC558BRLG	TO-92 (Pb-Free)	2000 / Tape & Reel
BC558BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
BC558BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box

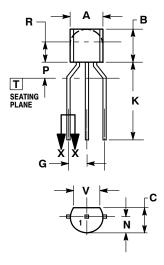
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER

- AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS					
DIM	MIN	MAX				
Α	4.45	5.20				
В	4.32	5.33				
С	3.18	4.19				
D	0.40	0.54				
G	2.40	2.80				
J	0.39	0.50				
K	12.70					
N	2.04	2.66				
P	1.50	4.00				
R	2.93					
V	3.43					

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15GTI in are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the Office States and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) CASE 29-11 ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
2.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	PIN 1.	DRAIN GATE SOURCE & SUBSTRATE	PIN 1.	BASE 1 EMITTER BASE 2	2.	CATHODE
2.	CATHODE & ANODE	2.	GATE	2.	ANODE 1 GATE CATHODE 2	2.	EMITTER COLLECTOR BASE	2.	ANODE 1
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	PIN 1.	COLLECTOR BASE EMITTER	PIN 1.	ANODE CATHODE NOT CONNECTED	PIN 1.	GATE	PIN 1. 2.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER BASE	PIN 1. 2.	SOURCE	PIN 1. 2.	GATE SOURCE DRAIN	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
	Vcc	PIN 1. 2.	MT	STYLE 28: PIN 1. 2. 3.	ANODE	PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN
	GATE	PIN 1. 2.	BASE COLLECTOR EMITTER	PIN 1. 2.		PIN 1. 2.	INPUT GROUND LOGIC	2.	GATE

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com