

BC846BWT1G Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number B

BC846BWT1G-DG

Manufacturer

onsemi

Manufacturer Product Number

BC846BWT1G

Description

TRANS NPN 65V 0.1A SC70-3

Detailed Description

Bipolar (BJT) Transistor NPN 65 V 100 mA 100MHz 1

50 mW Surface Mount SC-70-3 (SOT323)

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
BC846BWT1G	onsemi
Series:	Product Status:
	Active
Transistor Type:	Current - Collector (Ic) (Max):
NPN	100 mA
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, Ic:
65 V	600mV @ 5mA, 100mA
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ lc, Vce:
15nA (ICBO)	200 @ 2mA, 5V
Power - Max:	Frequency - Transition:
150 mW	100MHz
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Package / Case:	Supplier Device Package:
SC-70, SOT-323	SC-70-3 (SOT323)
Base Product Number:	
BC846	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.21.0075	

www.onsemi.com

General Purpose Transistors

NPN Silicon

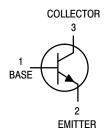
BC846, BC847, BC848

These transistors are designed for general purpose amplifier applications. They are housed in the SC-70/SOT-323 which is designed for low power surface mount applications.

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC846 BC847 BC848	V _{CEO}	65 45 30	V
Collector-Base Voltage BC846 BC847 BC848	V _{CBO}	80 50 30	٧
Emitter-Base Voltage BC846 BC847 BC848	V _{EBO}	6.0 6.0 5.0	V
Collector Current - Continuous	I _C	100	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) T _A = 25 °C	P_{D}	200	mW
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	620	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

SC-70/SOT-323 **CASE 419** STYLE 3

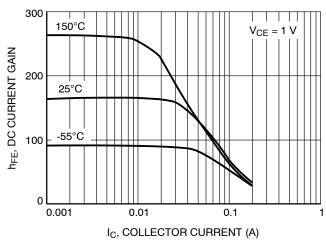
MARKING DIAGRAM

XX= Specific Device Code = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering, marking and shipping information on page 12 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS				•	•		
Collector - Emitter Breakdowr (I _C = 10 mA)	n Voltage	BC846 Series BC847 Series BC848 Series	V _(BR) CEO	65 45 30	- - -	- - -	V
Collector - Emitter Breakdowr ($I_C = 10 \mu A, V_{EB} = 0$)	n Voltage	BC846 Series BC847 Series BC848 Series	V _(BR) CES	80 50 30	- - -	- - -	V
Collector - Base Breakdown \ $(I_C = 10 \mu A)$	/oltage	BC846 Series BC847 Series BC848 Series	V _(BR) CBO	80 50 30	- - -	- - -	V
Emitter-Base Breakdown Vo $(I_E = 1.0 \mu A)$	ltage	BC846 Series BC847 Series BC848 Series	V _{(BR)EBO}	6.0 6.0 5.0	- - -	- - -	V
Collector Cutoff Current	(V _{CB} = 30 V) (V _{CB} = 30 V, T _A = 150°C)		I _{CBO}	- -	- -	15 5.0	nA μA
ON CHARACTERISTICS							
DC Current Gain ($I_C = 10 \mu A$, $V_{CE} = 5.0 V$)		46A, BC847A, BC848A 46B, BC847B, BC848B BC847C, BC848C	h _{FE}	- - -	90 150 270	- - -	_
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC846A, BC847A, BC848A BC8	46B, BC847B, BC848B BC847C, BC848C		110 200 420	180 290 520	220 450 800	
Collector-Emitter Saturation	Voltage ($I_C = 10 \text{ mA}$, $I_B = 0.5$ ($I_C = 100 \text{ mA}$, $I_B = 5.0 \text{ m}$		V _{CE(sat)}	- -	- -	0.25 0.6	V
Base-Emitter Saturation Volt	age (I_C = 10 mA, I_B = 0.5 mA (I_C = 100 mA, I_B = 5.0 m		V _{BE(sat)}	- -	0.7 0.9	_ _	V
Base-Emitter Voltage ($I_C = 2$) ($I_C = 1$)	.0 mA, V _{CE} = 5.0 V) 10 mA, V _{CE} = 5.0 V)		V _{BE(on)}	580 -	660 -	700 770	mV
SMALL-SIGNAL CHARACT	ERISTICS						
Current-Gain – Bandwidth P (I _C = 10 mA, V _{CE} = 5.0 Vdc,			f _T	100	_	-	MHz
Output Capacitance (V _{CB} = 1	0 V, f = 1.0 MHz)		C _{obo}	-	_	4.5	pF
Noise Figure (I _C = 0.2 mA, V	$_{CE}$ = 5.0 Vdc, R_{S} = 2.0 kΩ, f =	= 1.0 kHz, BW = 200 Hz)	NF	_	-	10	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BC846A, BC847A, BC848A

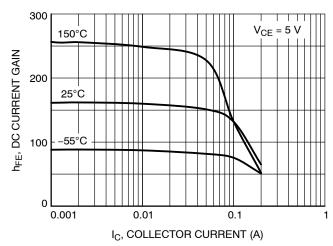


Figure 1. DC Current Gain vs. Collector Current

Figure 2. DC Current Gain vs. Collector Current

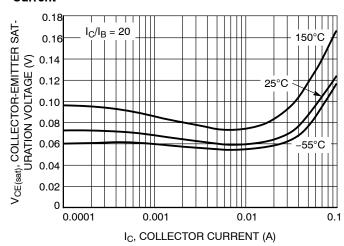
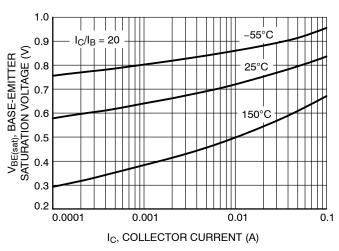



Figure 3. Collector Emitter Saturation Voltage vs. Collector Current

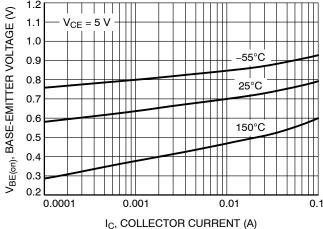
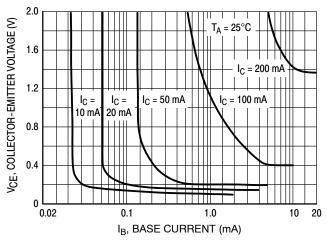



Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

Figure 5. Base Emitter Voltage vs. Collector Current

BC846A, BC847A, BC848A

400 300

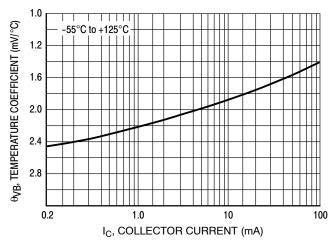
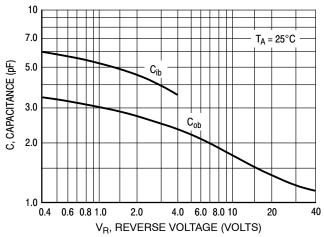



Figure 6. Collector Saturation Region

Figure 7. Base-Emitter Temperature Coefficient

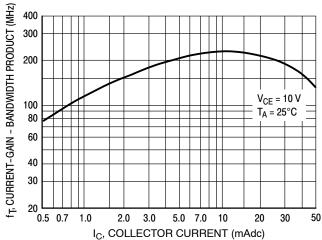
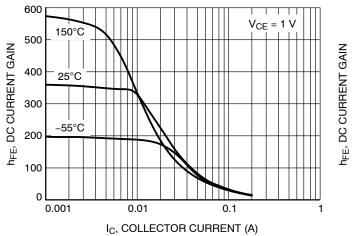



Figure 8. Capacitances

Figure 9. Current-Gain - Bandwidth Product

BC846B

600 150°C 400 25°C 25°C 200 25°C 100 0 0.001 0.01 0.1 1

Figure 10. DC Current Gain vs. Collector Current

Figure 11. DC Current Gain vs. Collector Current

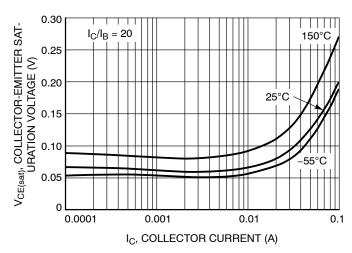
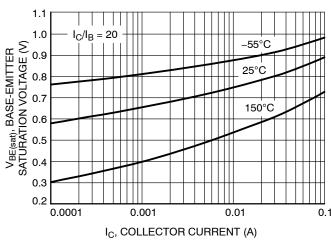



Figure 12. Collector Emitter Saturation Voltage vs. Collector Current

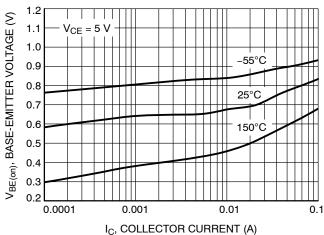
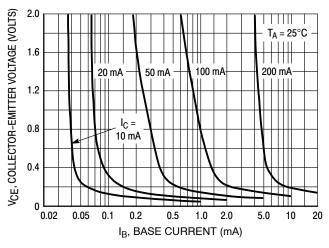



Figure 13. Base Emitter Saturation Voltage vs. Collector Current

Figure 14. Base Emitter Voltage vs. Collector Current

BC846B

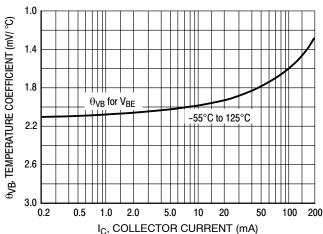


Figure 15. Collector Saturation Region

Figure 16. Base-Emitter Temperature Coefficient

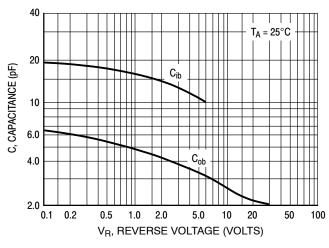


Figure 17. Capacitance

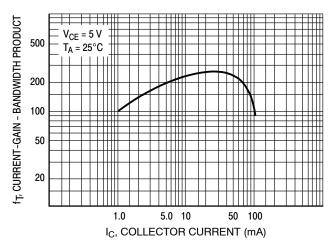
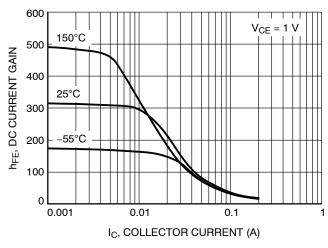



Figure 18. Current-Gain - Bandwidth Product

BC847B, BC848B

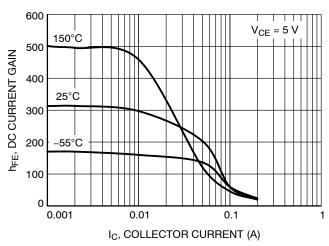


Figure 19. DC Current Gain vs. Collector Current

Figure 20. DC Current Gain vs. Collector Current

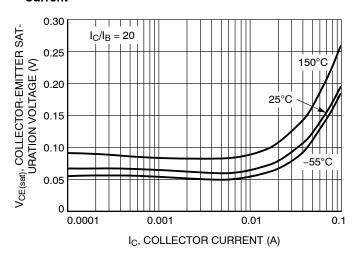


Figure 21. Collector Emitter Saturation Voltage vs. Collector Current

Figure 22. Base Emitter Saturation Voltage vs. Collector Current

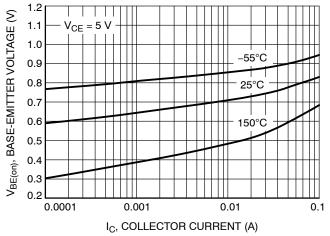
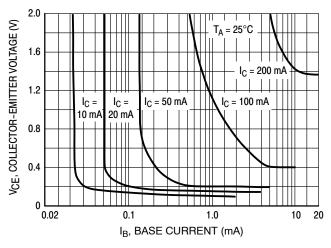
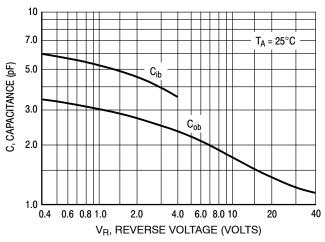



Figure 23. Base Emitter Voltage vs. Collector Current

BC847B, BC848B


400

1.0 θ√B, TEMPERATURE COEFFICIENT (mV/°C) 1.2 1.6 2.0 2.4 2.8 0.2 1.0 10 100 I_C, COLLECTOR CURRENT (mA)

Figure 24. Collector Saturation Region

Figure 25. Base-Emitter Temperature Coefficient

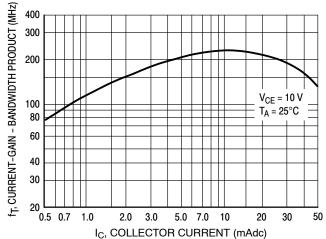
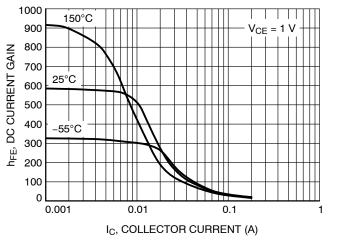



Figure 26. Capacitances

Figure 27. Current-Gain – Bandwidth Product

BC847C, BC848C

1000 900 150°C 800 hFE, DC CURRENT GAIN 700 600 25°C 500 400 -55°C 300 200 100 0.001 0.1 I_C, COLLECTOR CURRENT (A)

Figure 28. DC Current Gain vs. Collector Current

Figure 29. DC Current Gain vs. Collector Current

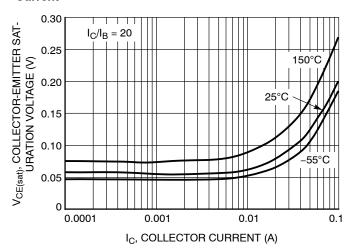


Figure 30. Collector Emitter Saturation Voltage vs. Collector Current

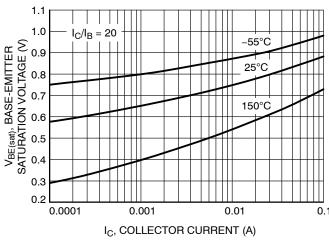


Figure 31. Base Emitter Saturation Voltage vs. Collector Current

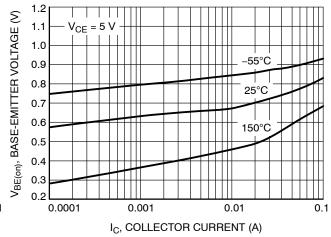


Figure 32. Base Emitter Voltage vs. Collector
Current

BC847C, BC848C

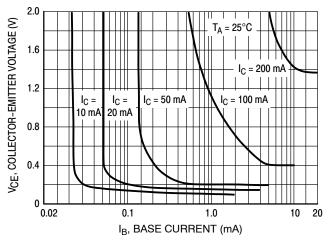
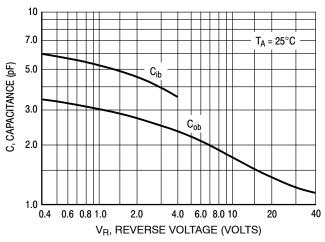



Figure 33. Collector Saturation Region

Figure 34. Base-Emitter Temperature Coefficient

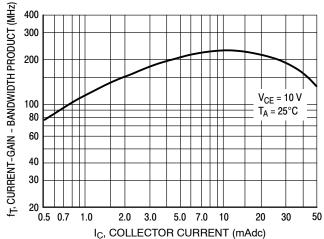


Figure 35. Capacitances

Figure 36. Current-Gain – Bandwidth Product

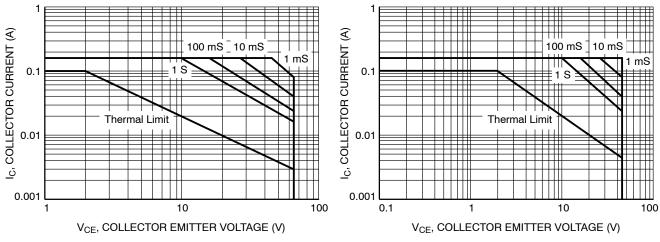


Figure 37. Safe Operating Area for BC846A, BC846B

Figure 38. Safe Operating Area for BC847A, BC847B, BC847C

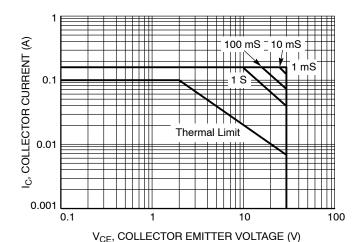


Figure 39. Safe Operating Area for BC848A, BC848B, BC848C

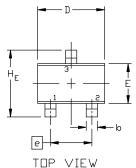
DEVICE ORDERING AND SPECIFIC MARKING INFORMATION

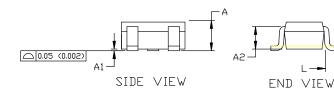
Device	Specific Marking Code	Package	Shipping [†]	
BC846BWT1G	4D		3,000 / Tape & Reel	
SBC846BWT1G*	1B			
BC847AWT1G	45		3,000 / Tape & Reel	
SBC847AWT1G*	1E			
BC847BWT1G	1F		3,000 / Tape & Reel	
SBC847BWT1G*	IF IF	SC-70 (SOT-323) (Pb-Free)		
BC847CWT1G	1G		3,000 / Tape & Reel	
SBC847CWT1G*	IG			
BC847CWT3G	1G		10,000 / Tape & Reel	
SBC847CWT3G*	IG			
BC848BWT1G	1K			
NSVBC848BWT1G*] 'K		3,000 / Tape & Reel	
BC848CWT1G	1L			

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified

and PPAP Capable.


MECHANICAL CASE OUTLINE

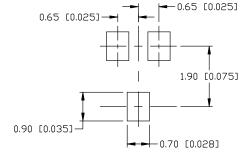

PACKAGE DIMENSIONS

DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS				INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF			0.028 BS	C
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC				0.026 BS	C
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095



XX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com