

CAT863TTBI-GT3 Datasheet

www.digi-electronics.com

https://www.DiGi-Electronics.com

DiGi Electronics Part Number CAT863TTBI-GT3-DG

Manufacturer onsemi

Manufacturer Product Number CAT863TTBI-GT3

Description IC SUPERVISOR 1 CHANNEL SOT23-3

Detailed Description Supervisor Open Drain or Open Collector 1 Channe

LSOT-23-3

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
CAT863TTBI-GT3	onsemi
Series:	Product Status:
	Obsolete
DiGi-Electronics Programmable:	Type:
Not Verified	Simple Reset/Power-On Reset
Number of Voltages Monitored:	Voltage - Threshold:
1	3.08V
Output:	Reset:
Open Drain or Open Collector	Active Low
Reset Timeout:	Operating Temperature:
140ms Minimum	-40°C ~ 85°C (TA)
Mounting Type:	Package / Case:
Surface Mount	TO-236-3, SC-59, SOT-23-3
Supplier Device Package:	Base Product Number:
SOT-23-3	CAT863

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

3-Pin Microprocessor Power Supply Supervisors

Description

The CAT853, CAT863, CAT859, and CAT869 are supervisory circuits that monitor power supplies in digital systems.

These devices generate a reset signal, which is asserted while the power supply voltage is below a preset threshold level and for at least 140 ms after the power supply level has risen above that level. Industry standard threshold levels are offered to support +3.3 V or 5.0 V systems.

The CAT859 and CAT869 feature a RESET push-pull output (active low) for the two pinout options.

The CAT853 and CAT863 feature an open drain RESET output (active low). Both require a pull-up resistor on the RESET output.

Fast transients on the power supply are ignored and the output is guaranteed to be in the correct state at V_{CC} levels as low as 1.0 V.

Features

- Precision Monitoring of +3.3 V (-5%, -10%),
 5 V (-10% Power Supplies)
- Active Low Reset Output
- Reset Valid down to $V_{CC} = 1.0 \text{ V}$
- 6 μA Power Supply Current
- Power Supply Transient Immunity
- Industrial Temperature Range: -40°C to +85°C
- SOT-23 Package
- These Devices are Pb-Free and are RoHS Compliant

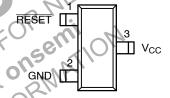
Applications 5

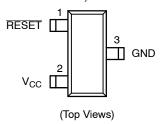
- Computers, Servers, Laptops and Cable Modems
- Wireless Communications
- Embedded Control Systems
- White Goods
- Power Meters
- Intelligent Instruments
- PDAs and Handheld Equipment

Table 1. THRESHOLD SUFFIX SELECTOR

Nominal Threshold Voltage	Threshold Suffix Designation
4.63 V	L
4.38 V	М
4.20 V	F
4.00 V	J
3.08 V	Т
2.93 V	S
2.63 V	R
2.40 V	С
2.32 V	Z

ON Semiconductor®


http://onsemi.com


SOT-23 TB SUFFIX CASE 527AG

PIN CONFIGURATION

CAT853, CAT859

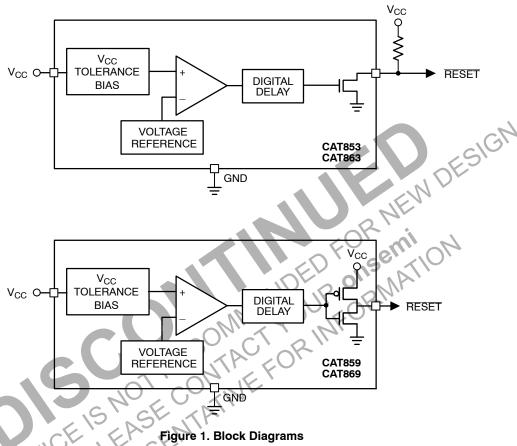
CAT863, CAT869

MARKING DIAGRAM

XXX = Specific Device Code

M = Date Code

= Pb-Free Package


(*Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Table 2. PIN DESCRIPTION

Pin Name	Function
RESET	Active low reset. $\overline{\text{RESET}}$ is asserted if V_{CC} falls below the reset threshold and remains low for at least 140 ms after V_{CC} rises above the reset threshold
GND	Ground
V _{CC}	Power supply voltage that is monitored

Table 3. ABSOLUTE MAXIMUM RATINGS

Parameters	Ratings	Units
Any pin with respect to ground	-0.3 to +6.0	V
Input Current, V _{CC}	20	mA
Output Current, RESET	20	mA
Rate of Rise, V _{CC}	100	V/µs
Continuous Power Dissipation Derate 4 mW/°C above 70°C (SOT23)	320	mW
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-65 to +105	°C
Lead Soldering Temperature (10 sec)	300	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. ELECTRICAL CHARACTERISTICS (V_{CC} = Full range, T_A = -40°C to +85°C unless otherwise noted. Typical values at T_A = +25°C and V_{CC} = 3.3 V for the C, S, T versions, V_{CC} = 5 V for the M version.)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
	V _{CC} Range	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		1.0		5.5	V
		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.2		5.5	
I _{CC}	Supply Current	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	V _{CC} < 3.6 V, C, S, T		6	15	μΑ
V_{TH}	Reset Threshold Voltage	L Threshold	$T_A = +25^{\circ}C$	4.56	4.63	4.70	V
	vollage		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.50		4.75	
		M Threshold	T _A = +25°C	4.31	4.38	4.45	
			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	4.25		4.50	
		F Threshold	$T_A = +25^{\circ}C$	4.14	4.20	4.26	
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.08		4.31	
		J Threshold	$T_A = +25^{\circ}C$	3.93	4.00	4.06	7
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.89		4:10	
		T Threshold	T _A = +25°C	3.04	3.08	3.11	
			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	3.00	SM.	3.15	
		S Threshold	T _A = +25°C	2.89	2.93	2.96	
			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2,85	in	3.00	
		R Threshold	T _A = +25°C	2.59	2.63	2.66	
			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.55	VI,	2.70	
		C Threshold	T _A = +25°C	2.35	2.40	2.45	
			T _A = -40°C to +85°C	2.30		2.50	
		Z Threshold	T _A = +25°C	2.28	2.32	2.35	
		SE	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.25		2.38	
	Reset Threshold Tempco	100 100	NE		30		ppm/°C
	V _{CC} to Reset Delay	V _{CC} = V _{TH} to (V _{TH} − 100 mV)			20		μs
	Reset Active Timeout Period	T _{A'} = -40°C to +85°C		140	240	460	ms
V _{OL}	RESET Output	V _{CC} = V _{TH} min, I _{SINK} = 1.2 mA				0.4	V
	Voltage Low	V _{CC} > 1.0 V, I _s	V _{CC} > 1.0 V, I _{SINK} = 50 μA			0.3	
V _{OH}	RESET Output Voltage High	V _{CC} = V _{TH} max, I _{SOURCE} = -500 μA (for CAT859/869 only)		0.8 V _{CC}			V

^{1.} Production testing done at $T_A = +25$ °C; limits over temperature guaranteed by design only.

 $\begin{tabular}{ll} \textbf{TYPICAL ELECTRICAL OPERATING CHARACTERISTICS} \\ (V_{CC} = Full range, T_A = -40^{\circ}C \ to \ +85^{\circ}C \ unless \ otherwise \ noted. Typical values at T_A = +25^{\circ}C \ and \ V_{CC} = 3.3 \ V_{CC} \ and \ V_{CC} \ and \ V_{CC} = 3.3 \ V_{CC} \ and \ V_{C$ for the C, S, T versions, V_{CC} = 5 V for the M version.)

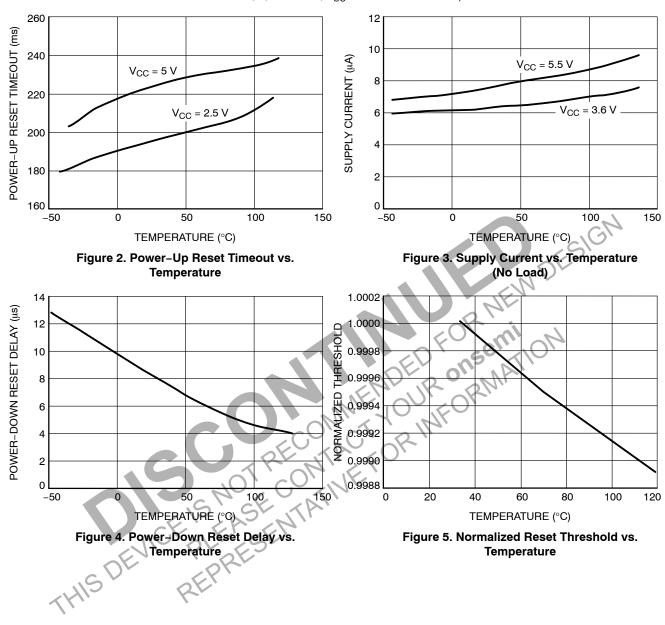


Figure 5. Normalized Reset Threshold vs. **Temperature**

TEMPERATURE (°C)

DETAILED DESCRIPTION

Reset Timing

The reset signal is asserted low for the CAT853, CAT863, CAT869, and CAT869 when the power supply voltage falls below the threshold trip voltage and remains asserted for at least 140 ms after the power supply voltage has risen above the threshold.

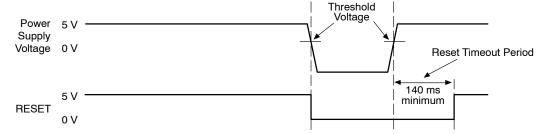


Figure 6. Reset Timing Diagram

V_{CC} Transient Response

The CAT853, CAT863, CAT859, and CAT869 protect μPs against brownout failure. Short duration transients of 4 μs or less and 100 mV amplitude typically do not cause a false RESET.

Figure 7 shows the maximum pulse duration of negative–going V_{CC} transients that do not cause a reset condition. As the amplitude of the transient goes further below the threshold (increasing $V_{TH} - V_{CC}$), the maximum pulse duration decreases. In this test, the V_{CC} starts from an initial voltage of 0.5 V above the threshold and drops below it by the amplitude of the overdrive voltage ($V_{TH} - V_{CC}$).

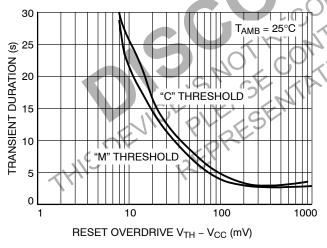


Figure 7. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator Overdrive

Valid Reset with V_{CC} under 1.0 V

To ensure that the CAT859 and CAT869 \overline{RESET} pin is in a known state when V_{CC} is under 1.0 V, a > 10 k Ω pull-down resistor between \overline{RESET} pin and GND is recommended.

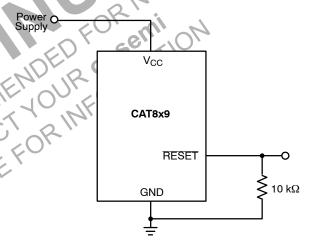


Figure 8. RESET Valid with V_{CC} Under 1.0 V

Bi-directional Reset Pin Interfacing

The CAT859 and CAT869 can interface with $\mu P/\mu C$ bi–directional reset pins by connecting a 4.7 k Ω resistor in series with the CAT859 and CAT869 reset output and the $\mu P/\mu C$ bi-directional reset pin.

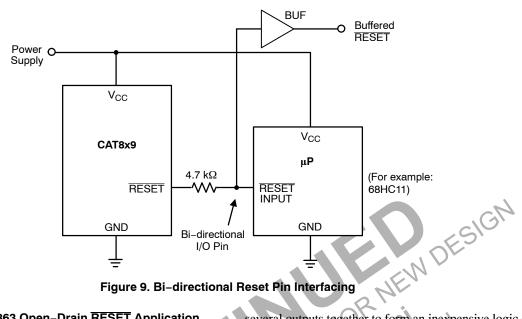


Figure 9. Bi-directional Reset Pin Interfacing

CAT853 and CAT863 Open-Drain RESET Application

The CAT853 and CAT863 features an open-drain RESET output and therefore need a pull-up resistor on the output for proper operation, as shown on Figure 10. An advantage of the open-drain output includes the ability to "wire AND"

several outputs together to form an inexpensive logic circuit. It is also possible to have the pull-up resistor connected to a different supply which can be higher than the CAT8x3 V_{CC} pin. The value of the pull-up resistor is not critical in most applications, typical values being between 5 k Ω and 10 k Ω .

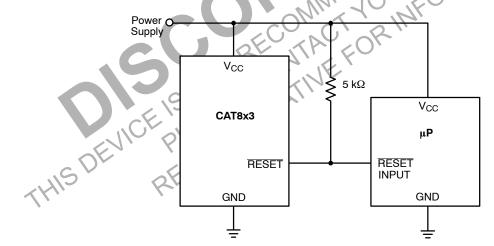


Figure 10. Typical CAT8x3 Open-Drain Circuit Configuration

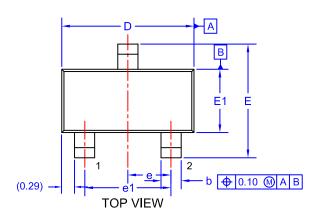
ORDERING INFORMATION

Order N	lumber		Top Mark	(Note 2)			Quantity per Reel
NiPdAu	Matte-Tin	Voltage	NiPdAu	Matte-Tin	Reset	Package	(Note 3)
CAT853LTBI-GT3	CAT853LTBI-T3	4.63 V	VPA	VPR			
CAT853MTBI-GT3	CAT853MTBI-T3	4.38 V	VPA	VPR			
CAT853FTBI-GT3	CAT853FTBI-T3	4.20 V	VPA	VPR			
CAT853JTBI-GT3	CAT853JTBI-T3	4.00 V	VPA	VPR			
CAT853TTBI-GT3	CAT853TTBI-T3	3.08 V	VPA	VPR	LOW	SOT-23-3	3,000
CAT853STBI-GT3	CAT853STBI-T3	2.93 V	VPA	VPR			
CAT853RTBI-GT3	CAT853RTBI-T3	2.63 V	VPA	VPR			
CAT853CTBI-GT3	CAT853CTBI-T3	2.40 V	VPA	VPR			
CAT853ZTBI-GT3	CAT853ZTBI-T3	2.32 V	VPA	VPR			
CAT859LTBI-GT3	CAT859LTBI-T3	4.63 V	VNA	VNR		\(\(\)	¹ / ₁
CAT859MTBI-GT3	CAT859MTBI-T3	4.38 V	VNA	VNR		151	
CAT859FTBI-GT3	CAT859FTBI-T3	4.20 V	VNA	VNR		DESIG	
CAT859JTBI-GT3	CAT859JTBI-T3	4.00 V	VNA	VNR	LOW		
CAT859TTBI-GT3	CAT859TTBI-T3	3.08 V	VNA	VNR	row	SOT-23-3	3,000
CAT859STBI-GT3	CAT859STBI-T3	2.93 V	VNA	VNR	isemi	(Ma)	
CAT859RTBI-GT3	CAT859RTBI-T3	2.63 V	VNA	VNR	Se' (O_{\prime}	
CAT859CTBI-GT3	CAT859CTBI-T3	2.40 V	VNA	VNR O	RMAT		
CAT859ZTBI-GT3	CAT859ZTBI-T3	2.32 V	VNA	VNR	RIV		
CAT863LTBI-GT3	CAT863LTBI-T3	4.63 V	VNB	VNK			
CAT863MTBI-GT3	CAT863MTBI-T3	4.38 V	VNB	VNK			
CAT863FTBI-GT3	CAT863FTBI-T3	4.20 V	VNB	VNK			
CAT863JTBI-GT3	CAT863JTBI-T3	4.00 V	VNB	VNK			
CAT863TTBI-GT3	CAT863TTBI-T3	3.08 V	VNB	VNK	LOW	SOT-23-3	3,000
CAT863STBI-GT3	CAT863STBI-T3	2.93 V	VNB	VNK			
CAT863RTBI-GT3	CAT863RTBI-T3	2.63 V	VNB	VNK			
CAT863CTBI-GT3	CAT863CTBI-T3	2.40 V	VNB	VNK			
CAT863ZTBI-GT3	CAT863ZTBI-T3	2.32 V	VNB	VNK			
CAT869LTBI-GT3	CAT869LTBI-T3	4.63 V	VNC	VNJ			
CAT869MTBI-GT3	CAT869MTBI-T3	4.38 V	VNC	VNJ			
CAT869FTBI-GT3	CAT869FTBI-T3	4.20 V	VNC	VNJ			
CAT869JTBI-GT3	CAT869JTBI-T3	4.00 V	VNC	VNJ			
CAT869TTBI-GT3	CAT869TTBI-T3	3.08 V	VNC	VNJ	LOW	SOT-23-3	3,000
CAT869STBI-GT3	CAT869STBI-T3	2.93 V	VNC	VNJ			
CAT869RTBI-GT3	CAT869RTBI-T3	2.63 V	VNC	VNJ			
CAT869CTBI-GT3	CAT869CTBI-T3	2.40 V	VNC	VNJ			
CAT869ZTBI-GT3	CAT869ZTBI-T3	2.32 V	VNC	VNJ			

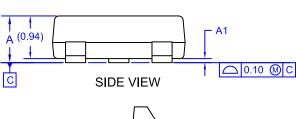
^{2.} Threshold and full part numbers will be provided on box and reel labels as well as all Shipping documents.

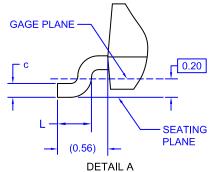
^{3.} For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

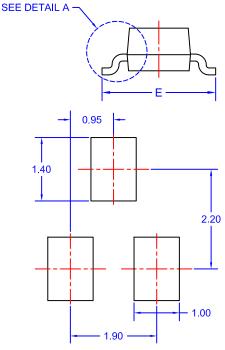
^{4.} For detailed information and a breakdown of device nomenclature and numbering systems, please see the ON Semiconductor Device Nomenclature document, TND310/D, available at www.onsemi.com


MECHANICAL CASE OUTLINE

SOT-23/SUPERSOT™-23, 3 LEAD, 1.4x2.9 CASE 527AG **ISSUE A**


DATE 09 DEC 2019




NOTES: UNLESS OTHERWISE SPECIFIED

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.

DIM	MIN.	NOM.	MAX.	
Α	0.85	0.95	1.12	
A1	0.00	0.05	0.10	
b	0.370	0.435	0.508	
С	0.085	0.150	0.180	
D	2.80	2.92	3.04	
E	2.31	2.51	2.71	
E1	1.20	1.40	1.52	
е	0.95 BSC			
e1	1.90 BSC			
L	0.33	0.38	0.43	

LAND PATTERN RECOMMENDATION*

*FOR ADDITIONAL INFORMATION ON OUR PI-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXM=

XXX = Specific Device Code = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON34319E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23/SUPERSOT-23, 3 LEAD, 1.4X2.9		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves brisefin and of 160 m are trademarked to demonstrate the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="https://www.onsemi.org/www.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com