

CD4001BCSJ Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	CD4001BCSJ-DG
Manufacturer	onsemi
Aanufacturer Product Number	CD4001BCSJ
Description	IC GATE NOR 4CH 2-INP 14SOP
Detailed Description	NOR Gate IC 4 Channel 14-SOP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
CD4001BCSJ	onsemi
Series:	Product Status:
4000B	Obsolete
Logic Type:	Number of Circuits:
NOR Gate	4
Number of Inputs:	Features:
2	
Voltage - Supply:	Current - Quiescent (Max):
3V ~ 15V	1 μΑ
Current - Output High, Low:	Input Logic Level - Low:
3.4mA, 3.4mA	1.5V ~ 4V
Input Logic Level - High:	Max Propagation Delay @ V, Max CL:
3.5V ~ 11V	70ns @ 15V, 50pF
Operating Temperature:	Mounting Type:
-55°C ~ 125°C	Surface Mount
Supplier Device Package:	Package / Case:
14-SOP	14-SOIC (0.209", 5.30mm Width)
Base Product Number:	
CD4001	

Environmental & Export classification

Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

FAIRCHILD

SEMICONDUCTOR

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate • Quad 2-Input NAND Buffered B Series Gate

General Description

The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs are protected against static discharge with diodes to V_{DD} and $V_{\text{SS}}.$

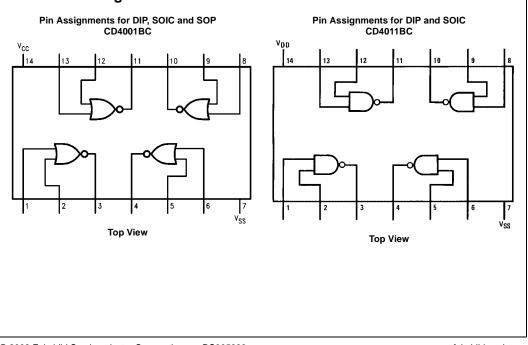
Ordering Code:

Order Number Package Number Package Description CD4001BCM M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow CD4001BCSJ 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide M14D CD4001BCN N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide CD4011BCM 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow M14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide CD4011BCN N14A

Features

■ Low power TTL:

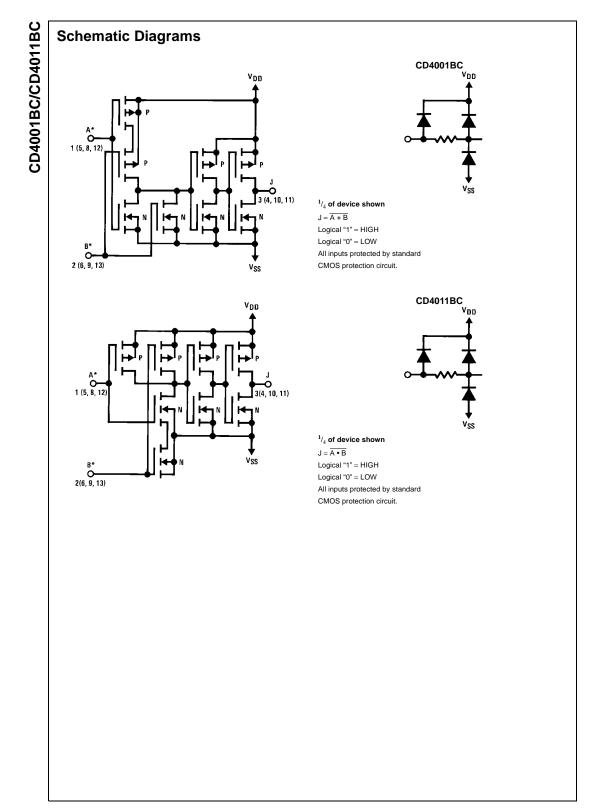
temperature range


■ 5V–10V–15V parametric ratings

Symmetrical output characteristics

■ Maximum input leakage 1 µA at 15V over full

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagrams

CD4001 BC/CD4011 BC Quad 2-Input NOR Buffered ω Series Gate • Quad 2-Input NAND Buffered B Series Gate

Fan out of 2 driving 74L compatibility: or 1 driving 74LS

© 2002 Fairchild Semiconductor Corporation DS005939

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Voltage at any Pin	-0.5V to V _{DD} $+0.5V$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
V _{DD} Range	–0.5 V_{DC} to +18 V_{DC}
Storage Temperature (T _S)	-65°C to +150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

 Operating Range (V_{DD})
 3 V_{DC} to 15 V_{DC}

 Operating Temperature Range
 CD4001BC, CD4011BC

 -55°C to +125°C

 Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Page" they are not meant the devices of bould be page.

CD4001 BC/CD4011BC

ture Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation. Note 2: All voltages measured with respect to V_{SS} unless otherwise speci-

fied.

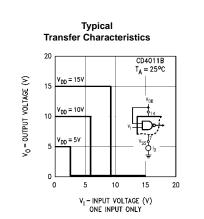
DC Electrical Characteristics (Note 2)

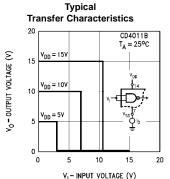
Symbol Parameter		Conditions	_55°C		+25°C		+125°C		Unite	
		Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		0.25		0.004	0.25		7.5	
	Current	V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		0.5		0.005	0.50		15	μA
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		1.0		0.006	1.0		30	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	
	Output Voltage	$V_{DD} = 10V$ $ I_0 < 1 \ \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		
	Output Voltage	$V_{DD} = 10V \qquad I_O < 1 \ \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
VIL	LOW Level	$V_{DD} = 5V, V_{O} = 4.5V$		1.5		2	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{O} = 9.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 13.5V$		4.0		6	4.0		4.0	
VIH	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V$	3.5		3.5	3		3.5		
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V$	11.0		11.0	9		11.0		
IOL	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
	(Note 3)	$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
	(Note 3)	$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.10		-10 ⁻⁵	-0.10		-1.0	μA
		V _{DD} = 15V, V _{IN} = 15V		0.1		10 ⁻⁵	0.10		1.0	μA

Note 3: I_{OL} and I_{OH} are tested one output at a time.

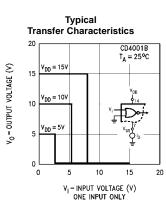
AC Electrical Characteristics (Note 4)

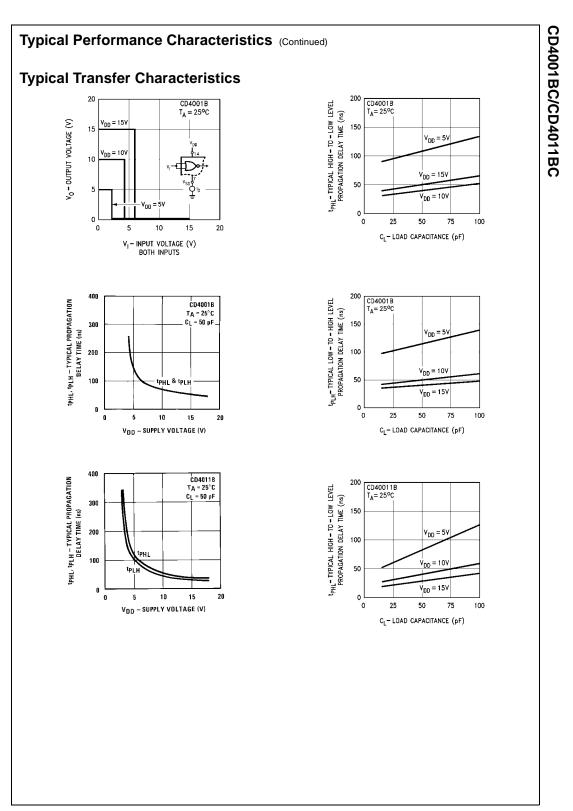
Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	120	250	
	HIGH-to-LOW Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	110	250	
	LOW-to-HIGH Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	
CIN	Average Input Capacitance	Any Input	5	7.5	pF
CPD	Power Dissipation Capacity	Any Gate	14		pF




	AC Electrical	Characteristics	(Note 5)
--	----------------------	-----------------	----------

Symbol	Parameter	Conditions	Тур	Max	Units
PHL	Propagation Delay,	$V_{DD} = 5V$	120	250	
	HIGH-to-LOW Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{PLH}	Propagation Delay,	$V_{DD} = 5V$	85	250	
	LOW-to-HIGH Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	14		pF


Note 5: AC Parameters are guaranteed by DC correlated testing.


Typical Performance Characteristics

V_I - INPUT VOLTAGE (V) BOTH INPUTS

В

С

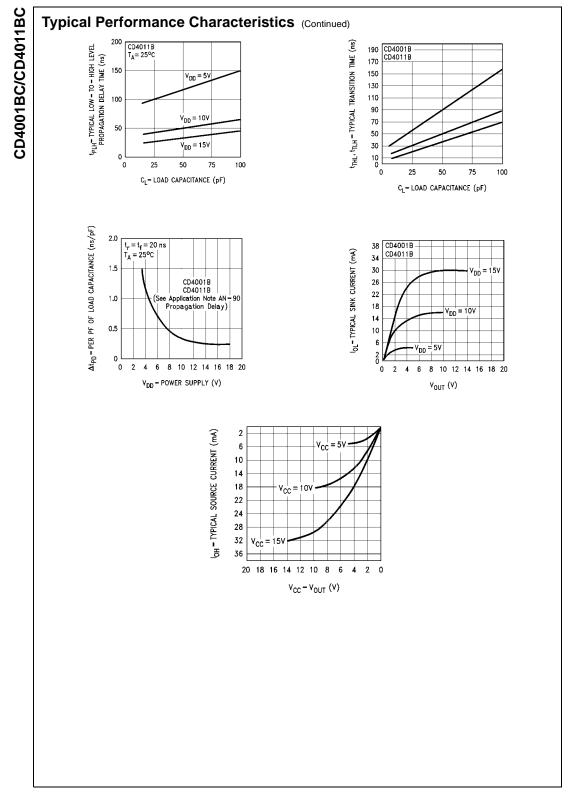
S

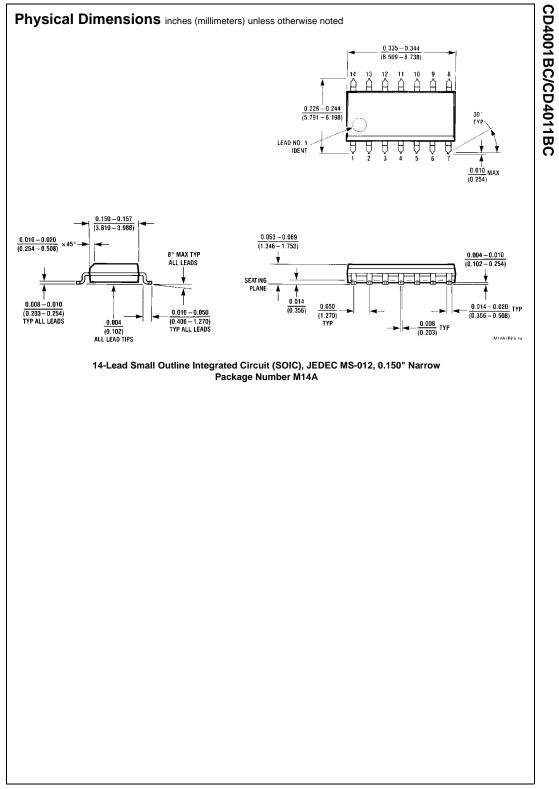
J

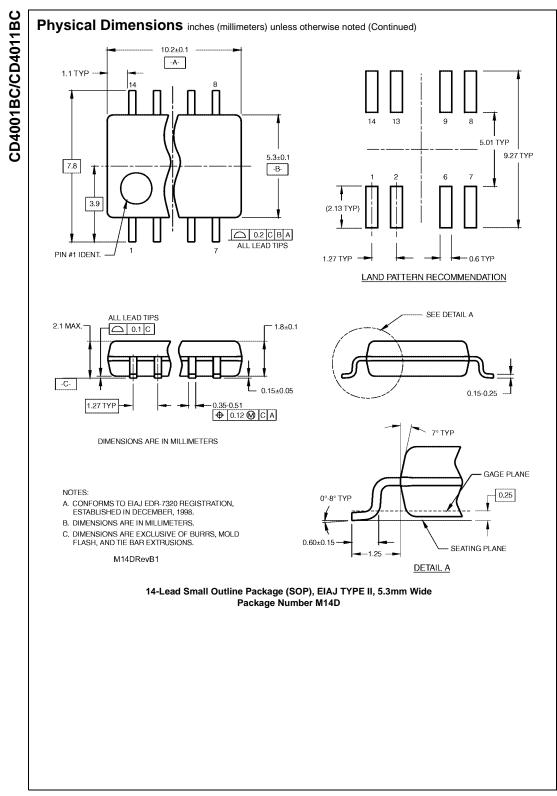
0

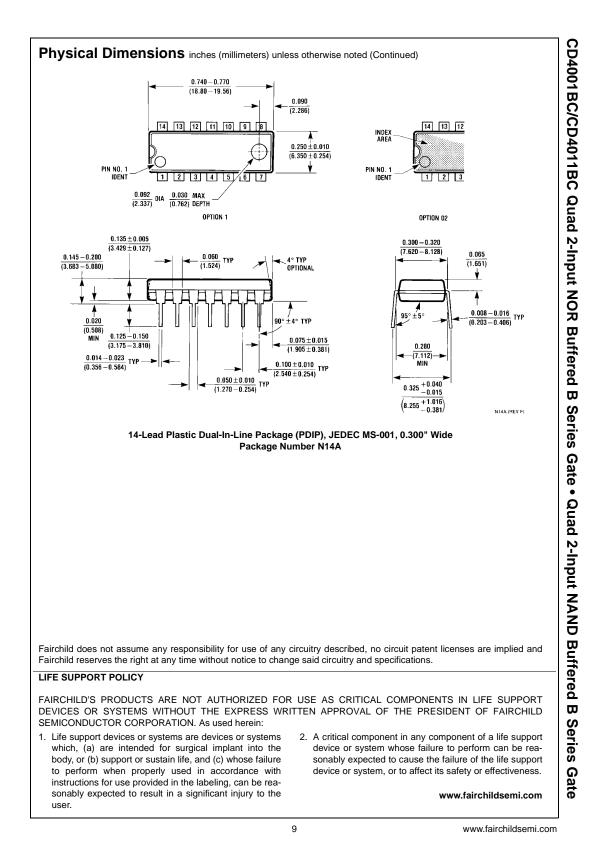
n

С


D


0


4


0

1

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>	<section-header><section-header></section-header></section-header>	
Image: Second	Here and the second sec	Hand and a set of the	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.