

# FAN156L6X-F106 Datasheet



| DiGi Electronics Part Number | FAN156L6X-F106-DG                                                 |
|------------------------------|-------------------------------------------------------------------|
| Manufacturer                 | onsemi                                                            |
| Manufacturer Product Number  | FAN156L6X-F106                                                    |
| Description                  | IC COMPARATOR 1 GEN PUR 6MICROPK                                  |
| Detailed Description         | Comparator General Purpose Push-Pull, Rail-to-Ra<br>il 6-MicroPak |

https://www.DiGi-Electronics.com



Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.



## Purchase and inquiry

| Manufacturer Product Number:  | Manufacturer:                      |
|-------------------------------|------------------------------------|
| FAN156L6X-F106                | onsemi                             |
| Series:                       | Product Status:                    |
|                               | Active                             |
| Type:                         | Number of Elements:                |
| General Purpose               | 1                                  |
| Output Type:                  | Voltage - Supply, Single/Dual (±): |
| Push-Pull, Rail-to-Rail       | 1.6V ~ 5.5V, ±0.8V ~ 2.75V         |
| Voltage - Input Offset (Max): | Current - Input Bias (Max):        |
| 15mV @ 5.5V                   | 10pA @ 5.5V                        |
| Current - Output (Typ):       | Current - Quiescent (Max):         |
|                               | 17μΑ                               |
| CMRR, PSRR (Typ):             | Propagation Delay (Max):           |
| 68db CMRR, 80db PSRR          | 400ns (Typ)                        |
| Hysteresis:                   | Operating Temperature:             |
| 4mV                           | -40°C ~ 85°C                       |
| Package / Case:               | Mounting Type:                     |
| 6-UFDFN                       | Surface Mount                      |
| Supplier Device Package:      | Base Product Number:               |
| 6-MicroPak                    | FAN156                             |

## **Environmental & Export classification**

| RoHS Status:     |  |
|------------------|--|
| ROHS3 Compliant  |  |
| REACH Status:    |  |
| REACH Unaffected |  |
| HTSUS:           |  |
| 8542.39.0001     |  |

| Moisture Sensitivity Level (MSL): |
|-----------------------------------|
| 1 (Unlimited)                     |
| ECCN:                             |
| EAR99                             |
|                                   |

# onsemi

# Low Voltage Comparator FAN156

#### Description

The FAN156 is a low–power single comparator that typically consumes less than 10  $\mu$ A of supply current. It is guaranteed to operate at a low voltage of 1.6 V and is fully operational up to 5.5 V, making it convenient for use in 1.8, 3.0 V, and 5.0 V systems.

The FAN156 has a complementary push–pull P– and N–channel output stage capable of driving a rail–to–rail output swing with a load ranging up to 5.0 mA.

#### Features

- Low Supply Current: I<sub>DD</sub> 6 µA (Typical)
- Single Power Supply Operation
- Wide Common–Mode Input Voltage Range
- Push-Pull Output Circuit
- Low Input Bias Current
- Internal Hysteresis
- Packaged in MicroPak<sup>™</sup> 6
- This is a Pb–Free Device

#### Applications

- Mobile Phones
- Alarm and Security Systems
- Personal Digital Assistants

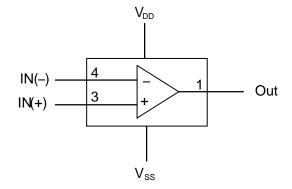



Figure 1. Functional Diagram

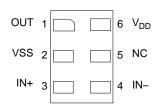


SIP6 1.45x1.0 CASE 127EB

#### MARKING DIAGRAM



- CN = Specific Device Code
- &K = 2–Digits Lot Run Traceability Code
- &2 = 2–Digit Date Code
- &Z = Assembly Plant Code


#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 7 of this data sheet.

FAN156L6X-F106 onsemi IC COMPARATOR 1 GEN PUR 6MICROPK

#### FAN156

#### **PIN CONFIGURATION**





#### **PIN DEFINITIONS**

| Pin # | Name            | Description             |
|-------|-----------------|-------------------------|
| 1     | OUT             | Comparator Output       |
| 2     | V <sub>SS</sub> | Negative Supply Voltage |
| 3     | IN+             | Non-Inverting Input     |
| 4     | IN–             | Inverting Input         |
| 5     | NC              | No Connect              |
| 6     | V <sub>DD</sub> | Positive Supply Voltage |

#### FUNCTION TABLE

| Inputs        | Outputs     |  |
|---------------|-------------|--|
| IN(-) > IN(+) | Output LOW  |  |
| IN(+) > IN(-) | Output HIGH |  |

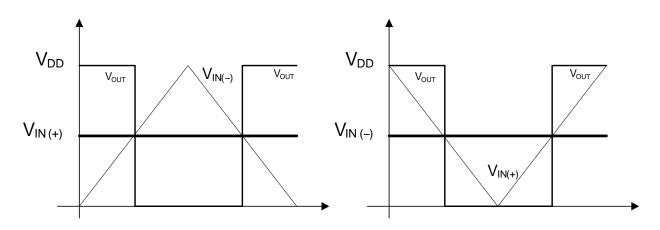



Figure 3. V<sub>IN</sub> vs. V<sub>OUT</sub>

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                             | Parameter                                  | Condition                                             | Min. | Max.                 | Unit |
|------------------------------------|--------------------------------------------|-------------------------------------------------------|------|----------------------|------|
| $V_{\text{DD}}$ to $V_{\text{SS}}$ | Supply Voltage                             |                                                       | -3.0 | +3.0                 | V    |
|                                    |                                            |                                                       | 0    | 6.0                  |      |
| DVIN                               | Differential Input Voltage                 |                                                       |      | ±6                   |      |
| V <sub>IN</sub>                    | Input Voltage                              |                                                       |      | $V_{SS}$ to $V_{DD}$ | V    |
| ts                                 | Output Short Circuit Duration (Note 1)     |                                                       |      | Indefinite           | S    |
| ТJ                                 | Junction Temperature                       |                                                       |      | +150                 | °C   |
| T <sub>STG</sub>                   | Storage Temperature Range                  |                                                       | -65  | +150                 | °C   |
| PD                                 | Power Dissipation                          |                                                       |      | 194                  | mW   |
| $\Theta_{JA}$                      | Thermal Resistance                         |                                                       |      | 335                  | °C/W |
| ESD                                | IEC 61000-4-2 System ESD                   | Air Gap                                               |      | 15                   | kV   |
|                                    |                                            | Contact                                               |      | 8                    |      |
|                                    | JEDEC JESD22-A114, Human Body              | All Pins                                              |      | 8                    |      |
|                                    | Model                                      | Pin to Pin: IN(–), IN(+)<br>to V <sub>DD</sub> or VSS |      | 12                   |      |
|                                    | JEDEC JESD22–C101, Charged Device<br>Model | All Pins                                              |      | 2                    |      |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The maximum total power dissipation must not be exceeded.

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                             | Parameter                       | Condition             | Min.  | Max.                         | Unit |
|------------------------------------|---------------------------------|-----------------------|-------|------------------------------|------|
| $V_{\text{DD}}$ to $V_{\text{SS}}$ | Power Supply                    |                       | -2.75 | +2.75                        | V    |
|                                    |                                 |                       | 0     | 5.50                         |      |
| V <sub>DD</sub>                    | Power Supply                    | V <sub>SS</sub> 0 V   | 1.6   | 5.5                          | V    |
| V <sub>IN</sub>                    | Input Voltage                   |                       |       | $\rm V_{SS}$ to $\rm V_{DD}$ | V    |
| I <sub>OH</sub> /I <sub>OL</sub>   | Output Sink/Source Current      | V <sub>DD</sub> 5.0 V |       | 5                            | mA   |
|                                    |                                 | V <sub>DD</sub> 3.0 V |       | 3                            |      |
|                                    |                                 | V <sub>DD</sub> 1.6 V |       | 1                            |      |
| T <sub>A</sub>                     | Operating Temperature, Free Air |                       | -40   | +85                          | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS**

| Symbol                                | Parameter                                         | Condition                                   | Min.            | Тур. | Max.            | Unit |
|---------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------|------|-----------------|------|
| V <sub>DD</sub> = 5.5 V, V            | / <sub>SS</sub> = GND, and T <sub>A</sub> = +25°C |                                             | •               |      |                 |      |
| V <sub>HYS</sub>                      | Input Hysteresis                                  | $V_{CM} = 0.5 V_{DD}$                       |                 | 4    |                 | mV   |
| V <sub>IO</sub>                       | Input Offset Voltage (Note 2)                     | $V_{CM} = 0.5 V_{DD}$                       | -15             | ±1   | +15             | mV   |
| I <sub>IO</sub>                       | Input Offset Current                              |                                             |                 | 10   |                 | pА   |
| l <sub>l</sub>                        | Input Bias Current                                |                                             |                 | 10   |                 | pА   |
| V <sub>CM</sub>                       | Common Mode Input Voltage                         |                                             | V <sub>SS</sub> |      | V <sub>DD</sub> | V    |
| CMRR                                  | Common Mode Rejection Ratio (Note 3)              | $V_{CM} = V_{DD}$                           |                 | 68   |                 | dB   |
| I <sub>DD</sub>                       | Supply Current                                    |                                             |                 | 6    | 17              | μA   |
| PSRR                                  | Power Supply Rejection Ratio (Note 3)             | $\Delta V_{DD} = 0.5 \text{ V}$             | 45              | 80   |                 | dB   |
| I <sub>OS</sub>                       | Output Short Circuit Current                      | $V_{O} = V_{DD}$                            |                 | 60   |                 | mA   |
|                                       |                                                   | $V_{O} = V_{SS}$                            |                 | 90   |                 |      |
| V <sub>OL</sub>                       | Low-Level Output Voltage                          | I <sub>SINK</sub> = 5.0 mA                  |                 | 0.1  | 0.3             | V    |
| V <sub>OH</sub>                       | High-Level Output Voltage                         | I <sub>SOURCE</sub> = 5.0 mA                | 5.2             | 5.4  |                 | V    |
| t <sub>PLH</sub>                      | Propagation Delay (Turn–On)                       | Overdrive 20 mV,<br>C <sub>L</sub> = 15 pF  |                 | 0.40 |                 | μs   |
| t <sub>PHL</sub>                      | Propagation Delay (Turn–Off)                      | Overdrive = 20 mV,<br>$C_L = 15 \text{ pF}$ |                 | 0.42 |                 | μs   |
| t <sub>TLH</sub>                      | Response Time, Output Rise/Fall                   | C <sub>L</sub> = 50 pF                      |                 | 4.0  |                 | ns   |
| t <sub>THL</sub>                      | (Note 4)                                          |                                             |                 | 5.4  |                 |      |
| V <sub>DD</sub> = 3 V, V <sub>S</sub> | <sub>S</sub> = GND, and T <sub>A</sub> = +25°C    |                                             |                 |      |                 |      |
| V <sub>HYS</sub>                      | Input Hysteresis                                  | $V_{CM} = 0.5 V_{DD}$                       |                 | 4    |                 | mV   |
| V <sub>IO</sub>                       | Input Offset Voltage (Note 2)                     | $V_{CM} = 0.5 V_{DD}$                       | –15             | ±1   | +15             | mV   |
| I <sub>IO</sub>                       | Input Offset Current                              |                                             |                 | 10   |                 | pА   |
| lı                                    | Input Bias Current                                |                                             |                 | 10   |                 | pА   |
| V <sub>CM</sub>                       | Common Mode Input Voltage                         |                                             | V <sub>SS</sub> |      | V <sub>DD</sub> | V    |
| CMRR                                  | Common Mode Rejection Ratio (Note 3)              | $V_{CM} = V_{DD}$                           |                 | 60   |                 | dB   |
| I <sub>DD</sub>                       | Supply Current                                    |                                             |                 | 5.5  | 15.0            | μΑ   |
| PSRR                                  | Power Supply Rejection Ratio (Note 3)             | $\Delta V_{DD} = 0.5 V$                     | 45              | 80   |                 | dB   |
| I <sub>OS</sub>                       | Output Short Circuit Current                      | $V_{O} = V_{DD}$                            |                 | 27   |                 | mA   |
|                                       |                                                   | $V_{O} = V_{SS}$                            |                 | 35   |                 |      |
| V <sub>OL</sub>                       | Low-Level Output Voltage                          | I <sub>SINK</sub> = 3.0 mA                  |                 | 0.15 | 0.35            | V    |
| V <sub>OH</sub>                       | High-Level Output Voltage                         | I <sub>SOURCE</sub> = 3.0 mA                | 2.65            | 2.85 |                 | V    |
| t <sub>PLH</sub>                      | Propagation Delay (Turn–On)                       | Overdrive = 20 mV,<br>$C_L = 15 \text{ pF}$ |                 | 0.45 |                 | μs   |
| t <sub>PHL</sub>                      | Propagation Delay (Turn–Off)                      | Overdrive = 20 mV,<br>$C_L = 15 \text{ pF}$ |                 | 0.47 |                 | μs   |
| t <sub>TLH</sub>                      | Response Time, Output Rise/Fall (Note 4)          | C <sub>L</sub> = 50 pF                      |                 | 6.1  | 1               | ns   |
| t <sub>THL</sub>                      | 1                                                 |                                             |                 | 6.2  | 1               | 1    |
|                                       | / <sub>SS</sub> = GND, and T <sub>A</sub> = +25°C |                                             | -               |      | •               |      |
| V <sub>HYS</sub>                      | Input Hysteresis                                  | $V_{CM} = 0.5 V_{DD}$                       |                 | 3.5  |                 | mV   |
| V <sub>IO</sub>                       | Input Offset Voltage (Note 2)                     | $V_{CM} = 0.5 V_{DD}$                       | -15             | ±1   | +15             | mV   |
| I <sub>IO</sub>                       | Input Offset Current                              |                                             |                 | 10   |                 | pА   |
| l                                     | Input Bias Current                                |                                             |                 | 10   |                 | pА   |
| V <sub>CM</sub>                       | Common Mode Input Voltage                         |                                             | V <sub>SS</sub> |      | V <sub>DD</sub> | V    |
| CMRR                                  | Common Mode Rejection Ratio                       | $V_{CM} = V_{DD}$                           | 1 1             | 56   |                 | dB   |

#### ELECTRICAL CHARACTERISTICS (continued)

| Symbol                     | Parameter                                       | Condition                                   | Min. | Тур. | Max. | Unit |  |
|----------------------------|-------------------------------------------------|---------------------------------------------|------|------|------|------|--|
| V <sub>DD</sub> = 1.6 V, V | <sub>SS</sub> = GND, and T <sub>A</sub> = +25°C |                                             |      |      |      |      |  |
| I <sub>DD</sub>            | Supply Current                                  |                                             |      | 5    | 15   | μA   |  |
| PSRR                       | Power Supply Rejection Ratio (Note 3)           | $\Delta V_{DD} = 0.5 V$                     | 45   | 80   |      | dB   |  |
| I <sub>OS</sub>            | Output Short Circuit Current                    | $V_{O} = V_{DD}$                            |      | 5.5  |      | mA   |  |
|                            |                                                 | $V_{O} = V_{SS}$                            |      | 7.5  |      |      |  |
| V <sub>OL</sub>            | Low–Level Output Voltage                        | I <sub>SINK</sub> = 5.0 mA                  |      | 0.10 | 0.25 | V    |  |
| V <sub>OH</sub>            | High-Level Output Voltage                       | I <sub>SOURCE</sub> = 5.0 mA                | 1.35 | 1.50 |      | V    |  |
| t <sub>PLH</sub>           | Propagation Delay (Turn–On)                     | Overdrive 20 mV,<br>$C_L = 15 \text{ pF}$   |      | 0.52 |      | μs   |  |
| t <sub>PHL</sub>           | Propagation Delay (Turn–Off)                    | Overdrive = 20 mV,<br>$C_L = 15 \text{ pF}$ |      | 0.54 |      | μs   |  |
| t <sub>TLH</sub>           | Response Time, Output Rise/Fall                 | C <sub>L</sub> = 50 pF                      |      | 16.5 |      | ns   |  |
| t <sub>THL</sub>           | (Note 4)                                        |                                             |      | 13.0 |      |      |  |

2. Differential input switching level is guaranteed at the minimum or maximum offset voltage, minus or plus half the maximum hysteresis voltage.

Guaranteed by design and characterization data.
Input signal: 1 kHz, square-wave signal with 10 ns edge rate.

#### **TYPICAL PERFORMANCE CHARACTERISTICS**

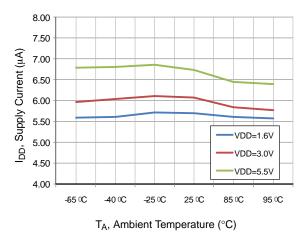



Figure 4. Supply Current vs. Temperature

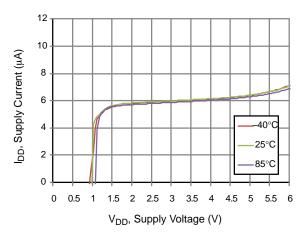



Figure 6. Supply Current vs. Supply Voltage

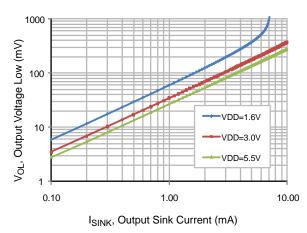
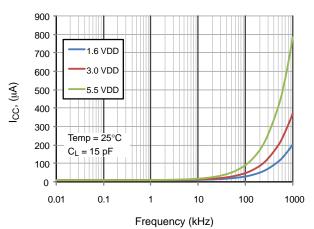
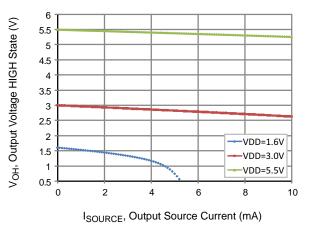
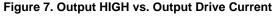
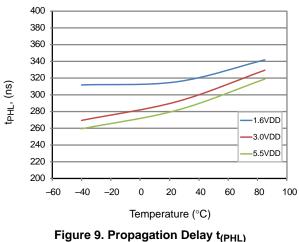
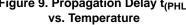
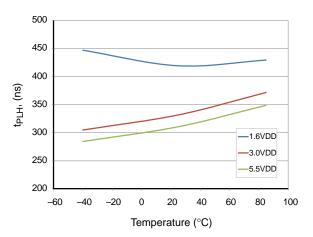



Figure 8. Output LOW vs. Output Drive Current



Figure 5. Supply Current vs. Output












#### TYPICAL PERFORMANCE CHARACTERISTICS (continued)





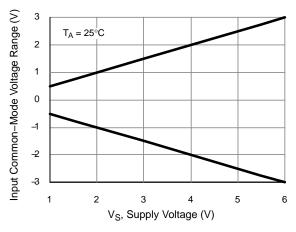



Figure 12. Input Common–Mode Voltage Range vs. Supply Voltage

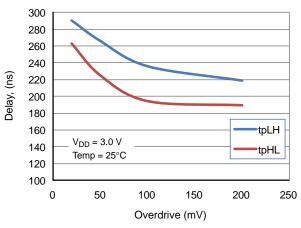



Figure 11. Propagation Delay vs. Input Overdrive

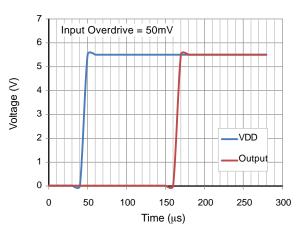
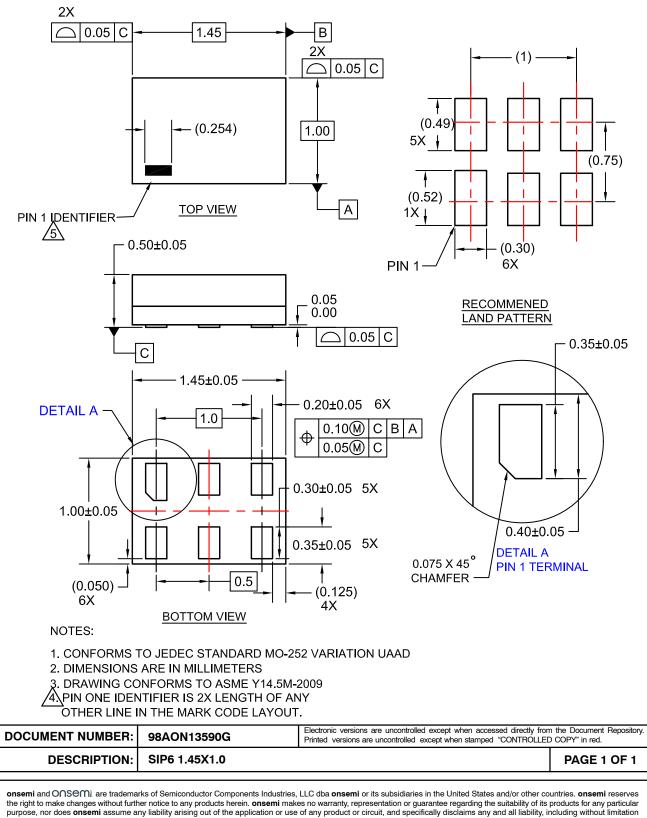



Figure 13. Power–Up Delay

#### ORDERING INFORMATION

| Device    | Operating<br>Temperature Range | Top Mark | Package                                                     | Shipping <sup>†</sup> |
|-----------|--------------------------------|----------|-------------------------------------------------------------|-----------------------|
| FAN156L6X | –40°C to +85°C                 | CN       | 6–Lead, SIP6 1.45x1.0 (MicroPak <sup>™</sup> )<br>(Pb–Free) | 5000 / Tape & Reel    |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


MicroPak is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



PACKAGE DIMENSIONS

SIP6 1.45X1.0 CASE 127EB ISSUE O

DATE 31 AUG 2016



© Semiconductor Components Industries, LLC, 2016

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

FAN156L6X-F106 onsemi IC COMPARATOR 1 GEN PUR 6MICROPK

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales



### **OUR CERTIFICATE**

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <section-header></section-header>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Image: State | Here and the second sec | Hermitian Hermitian   Hermitian |  |





Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.