

FAN7527BM Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number FAN7527BM-DG

Manufacturer onsemi

Manufacturer Product Number FAN7527BM

Description IC PFC CTRLR TRANSITION 8SOP

Detailed Description PFC IC Discontinuous (Transition) 8-SOIC

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FAN7527BM	onsemi
Series:	Product Status:
	Obsolete
Mode:	Frequency - Switching:
Discontinuous (Transition)	
Current - Startup:	Voltage - Supply:
60 μA	11.5V ~ 30V
Operating Temperature:	Mounting Type:
-25°C ~ 125°C	Surface Mount
Package / Case:	Supplier Device Package:
8-SOIC (0.154", 3.90mm Width)	8-SOIC
Base Product Number:	
FAN7527	

Environmental & Export classification

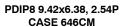
	22.00.00
Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8542.39.0001

Power Factor Correction Controller

FAN7527B

Description

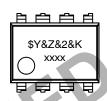
The FAN7527B provides simple and high-performance active Power Factor Correction (PFC). The FAN7527B is optimized for electronic ballasts and low-power, high-density power supplies that require minimum board size, reduced external components, and low power dissipation. Because the R/C filter is included in the current-sense block, an external R/C filter is not necessary. Special circuitry prevents no-load runaway conditions. Regardless of the supply voltage, the output drive clamping circuit limits the overshoot of the power MOSFET gate drive, which improves system reliability.

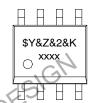

Features

- Internal Startup Timer
- Internal R/C Filter Eliminates the Need for External R/C Filter
- Precise Adjustable Output Over-Voltage Protection
- Zero Current Detector
- One Quadrant Multiplier
- Trimmed 1.5% Internal Band Gap Reference
- Under-Voltage Lockout with 3 V of Hysteresis
- Totem-Pole Output with High-State Clamp

- 8-Pin SOP or 8-Pin DIP
 These Devices are Pb-Free and are RoHS Compliant

 Applications
 Electronic Ballast
 SMPS

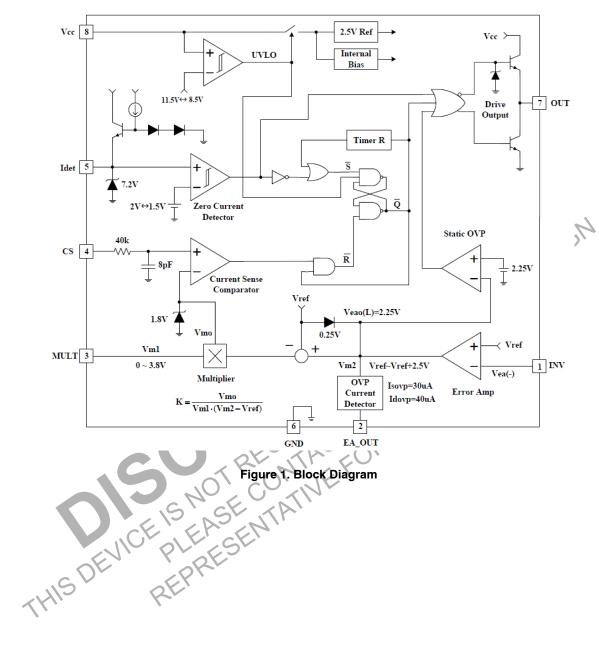




SOIC8 CASE 751EB

MARKING DIAGRAM

onsemi Logo 87 = Assembly Plant Code &2 = 2-Digit Date Code Lot Run Traceability Code &K XXXX Specific Device Code


ORDERING INFORMATION

7	Device	Package	Shipping [†]
	FAN7527BN	PDIP8 (Pb-Free)	3000 / Tube
2	FAN7527BMX	SOIC8 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NOTE: Operating Temperature Range of both devices is -25 to +125°C

BLOCK DIAGRAM

PIN CONFIGURATION

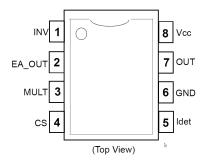


Figure 2. Pin Configuration

PIN DEFINITIONS

Pin #	Name	Description
1	INV	Inverting input of the error amplifier. The output of the boost converter should be resistively divided to 2.5 V and connected to this pin.
2	EA_OUT	Output of the error amplifier. Feedback compensation network is placed between this pin and the INV pin.
3	MULT	Input to the multiplier stage. The full-wave rectified AC voltage is divided to less than 2 V and is connected to this pin.
4	CS	Input of the PWM comparator. The MOSFET current is sensed by a resistor and the resulting voltage is applied to this pin. An internal R/C filter is included to reject high-frequency noise
5	ldet	Zero Current Detection (ZCD) input
6	GND	Ground
7	OUT	Gate driver output. Push-pull output stage is able to drive the power MOSFET with a peak current of 500 mA
8	V _{CC}	Supply voltage of driver and control circuits
THIS	DEVICE	of 500 mA Supply voltage of driver and control circuits

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Max.	Unit
Vcc	Supply Voltage	Supply Voltage		30	V
Iон, IoL	Peak Drive Output Current			±500	mA
ICLAMP	Driver Output Clamping Diodes V _O > V _{CC} or	V _O < -0.3 V		±10	mA
IDET	Detector Clamping Diodes			±10	mA
Vin	Error Amplifier Multiplier and Comparator Input Voltages		-0.3	6.0	V
TJ	Operation Junction Temperature			+150	°C
Topr	Operating Temperature Range		-25	+125	°C
Tstg	Storage Temperature Range		-65	+150	°C
Б	Power Dissipation	SOIC8		0.8	W
P _D		PDIP8		1.1	W
ΘЈΑ	Thermal Resistance Junction-Ambient	SOIC8		150	°C/W
ØJA		PDIP8	-6	110	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

TEMPERATURE CHARACTERISTICS

 $(-25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C})$

Symbol	Parameter Min.	Тур.	Max.	Unit
ΔV REF	Temperature Stability Reference Voltage (V _{REF})	20		mV
ΔΚ/ΔΤ	Temperature Stability for Multiplier Gain (K)	-0.2		% / °C
TH	S DEVICE IS NOT RECONTACT OR INFO REPRESENTATIVE POR INFO			

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 14 \text{ V}, -25^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}, \text{ unless otherwise stated.})$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
UNDER-VOL	TAGE LOCKOUT		_	=		
Vth(st)	Start Threshold Voltage	V _{CC} Increasing	10.5	11.5	12.5	V
HY(st)	UVLO Hysteresis		2	3	4	٧
SUPPLY CUR	RENT SECTION					
lsт	Startup Supply Current	$V_{CC} = V_{th(st)} - 0.2 \text{ V}$	10	60	100	μΑ
Icc	Operating Supply Current	Output Not Switching		3	6	mA
ICC(OVP)	Operating Current at OVP	V _{INV} = 3 V		1.7	4.0	mA
IDCC	Dynamic Operating Supply Current	50 kHz, C _l = 1 nF		4	8	mA
ERROR AMP	LIFIER SECTION				4	
VREF	Voltage Feedback Input Threshold	I _{REF} = 0 mA, T _A = 25°C	2.465	2.500	2.535	V
		25°C ≤ T _A ≤ 125°C	2.440	2.500	2,560	
ΔVFEF1	Line Regulation	14 V ≤ V _{CC} ≤ 25 V		0.1	10.0	mV
ΔV FEF3	Temperature Stability of V _{REF} (Note 1)	$-25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$		20		mV
lb(ea)	Input Bias Current		-0.5		0.5	μΑ
Isource	Output Source Current	V _{M2} = 4 V	-2	-4		mA
Isink	Output Sink Current	V _{M2} = 4 V	2	4		mA
VEAO(H)	Output Upper Clamp Voltage (Note 1)	I _{SOURCE} = 0.1 mA	RIVI	6		V
VEAO(L)	Output Lower Clamp Voltage (Note 1)	I _{SINK} = 0.1 mA	.0.	2.25		V
G _V	Large Signal Open-Loop Gain (Note 1)	0,0	60	80		dB
PSRR	Power Supply Rejection Ratio (Note 1)	14 V ≤ V _{CC} ≤ 25 V	60	80		dB
GBW	Unity Gain Bandwidth (Note 1)	JUE.		1		MHz
SR	Slew Rate (Note 1)			0.6		V/μs
MULTIPLIER	SECTION	,				
lb(m)	Input Bias Current (Pin 3)		-0.5		0.5	μΑ
ΔV_{M1}	M1 Input Voltage Range (Pin 3)				3.8	V
ΔV _{M2}	M2 Input Voltage Range (Pin 2)		VREF		V _{REF} +2.5	V
К	Multiplier Gain (Note 1)	V _{M1} = 1 V, V _{M2} = 3.5 V	0.36	0.44	0.52	1 / V
VOMAX(m)	Maximum Multiplier Output Voltage	V _{INV} = 0 V, V _{M1} = 4 V	1.65	1.80	1.95	V
ΔΚ/ΔΤ	Temperature Stability of K (Note 1)	$-25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$		-0.2		% / °C
CURRENT SE	ENSE SECTION	_				
VIO(CS)	Input Offset Voltage (Note 1)	$V_{M1} = 0 \text{ V}, V_{M2} = 2.2 \text{ V}$	-10	3	10	mV
lb(CS)	Input Bias Current	0 V ≤ V _{CS} ≤ 1.7 V	-1.0	-0.1	1.0	μΑ
tD(CS)	Current Sense Delay to Output (Note 1)			200	500	ns
ZERO CURRI	ENT DETECT SECTION	_			,	1
VTH(DET)	Input Voltage Threshold	V _{DET} Increasing	1.7	2.0	2.3	V
HY(DET)	Detect Hysteresis		0.2	0.5	0.8	V
VCLAMP(I)	Input Low Clamp Voltage	I _{DET} = -100 μA	0.45	0.75	1.00	V
VCLAMP(H)	Input High Clamp Voltage	I _{DET} = 3 mA	6.5	7.2	7.9	V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 14 \text{ V}, -25^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}, \text{ unless otherwise stated.})$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ZERO CURRE	ENT DETECT SECTION					
lb(DET)	Input Bias Current	1 V ≤ V _{DET} ≤ 5 V	-1.0	-0.1	1.0	μΑ
ICLAMP(D)	Input High/Low Clamp Diode Current (Note 1)				±3	mA
OUTPUT SEC	CTION					
Vон	Output Voltage High	I _O = -10 mA	10.5	11.0		V
Vol	Output Voltage Low	I _O = 10 mA		0.8	1.0	>
t _R	Rising Time (Note 1)	C _L = 1 nF		130	200	ns
t _F	Falling Time (Note 1)	C _L = 1 nF		50	120	ns
VOMAX(O)	Maximum Output Voltage	$V_{CC} = 20 \text{ V}, I_{O} = 100 \mu\text{A}$	12	14	16	V
VOMIN(O)	Output Voltage with UVLO Activated	$V_{CC} = 5 \text{ V}, I_{O} = 100 \mu\text{A}$			1, 1/	V
RESTART TIM	MER SECTION				. CIO.	
tD(RST)	Restart Time Delay	V _{M1} = 1 V, V _{M2} = 3.5 V		150		μs
OVER-VOLTA	AGE PROTECTION SECTION			N		
Isovp	Soft OVP Detecting Current		25	30	35	μΑ
IDOVP	Dynamic OVP Detecting Current		35	40	45	μΑ
Vovp	Static OVP Threshold Voltage	V _{INV} = 2.7 V	2.10	2.25	2.40	V
Product param performance m 1. These para Multiplier G $K = \frac{Pir}{V_{M1}}$ where V_{M1}	Dynamic OVP Detecting Current Static OVP Threshold Voltage letric performance is indicated in the Electrical Characterist meters, although guaranteed, are not 100% tested in: 14_Threshold V _{M2} - V _{REF}	variate ristics for the listed testics if operated under different ded in production.	onditions.	, uniess oth	erwise noted	a. Produc

$$K = \frac{Pin4_Threshold}{V_{M1} \times (V_{M2} - V_{REF})}$$

TYPICAL PERFORMANCE CHARACTERISTICS

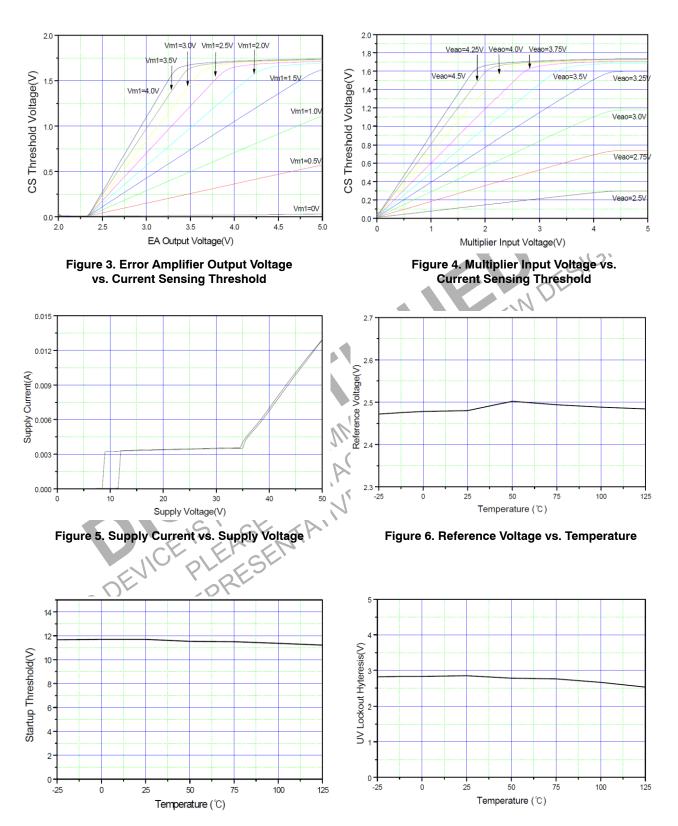
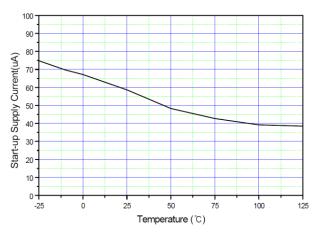



Figure 7. Startup Threshold vs. Temperature

Figure 8. UVLO Hysteresis vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

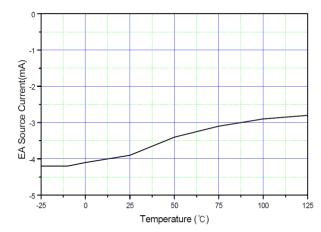
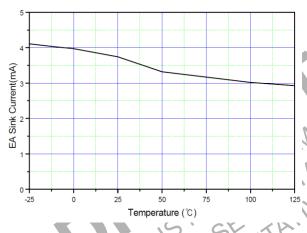



Figure 9. Startup Supply Current vs. Temperature

Figure 10. Error Amplifier Source Current

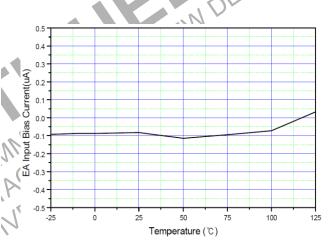
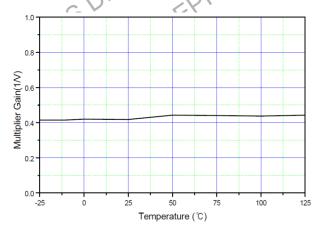



Figure 11. Error Amplifier Sink Current vs.
Temperature

Figure 12. Error Amplifier Input Bias Current vs. Temperature

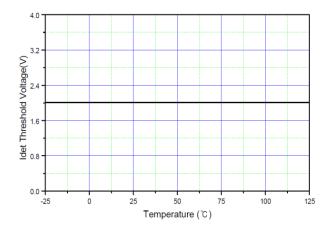
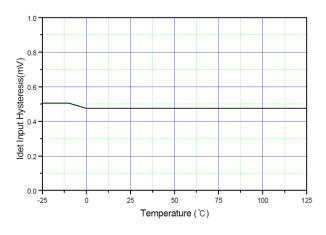



Figure 13. Multiplier Gain vs. Temperature

Figure 14. I_{DET} Threshold Voltage vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

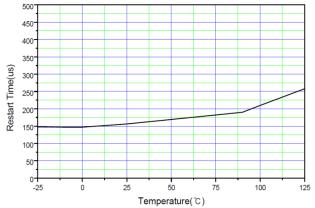
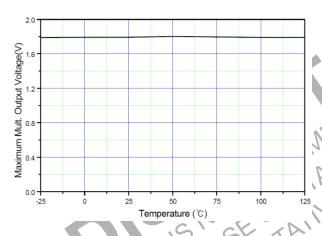



Figure 15. IDET Input Hysteresis vs. Temperature

Figure 16. Restart Time vs. Temperature

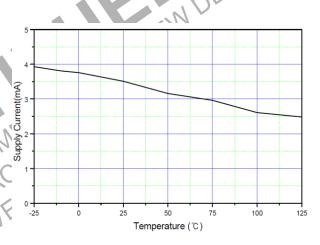
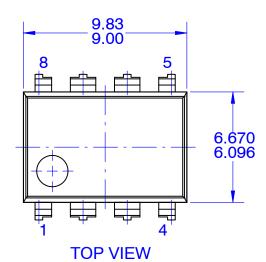
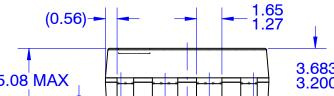
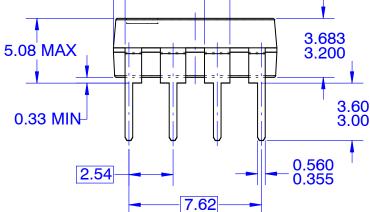


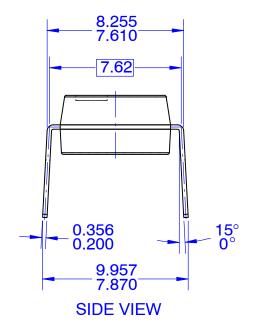
Figure 17. Maximum Multiplier Output Voltage vs. Temperature


Figure 18. Supply Current vs. Temperature




MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

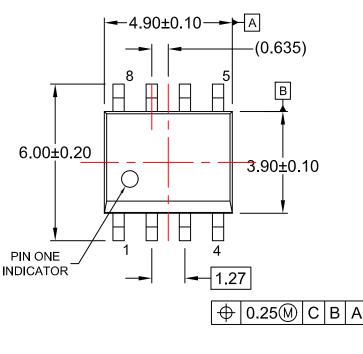
PDIP8 9.42x6.38, 2.54P CASE 646CM **ISSUE O**

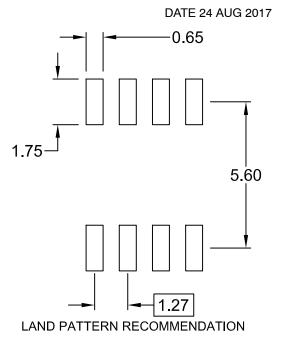

DATE 31 JUL 2016

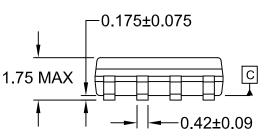
FRONT VIEW

NOTES:

A. CONFORMS TO JEDEC MS-001, VARIATION BA B. ALL DIMENSIONS ARE IN MILLIMETERS C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D. DIMENSIONS AND TOLERANCES PER ASME Y14.5M-2009

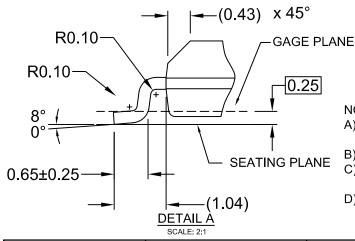

DESCRIPTION:	PDIP8 9.42X6.38, 2.54P		PAGE 1 OF 1
DOCUMENT NUMBER:	98AON13468G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	


onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves brisefin and of 160 m are trademarked to demonstrate the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOIC8 CASE 751EB ISSUE A



NOTES:

- A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
- D) LANDPATTERN STANDARD: SOIC127P600X175-8M

DOCUMENT NUMBER:	98AON13735G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC8		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com