

FCD850N80Z Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number

FCD850N80Z-DG

Manufacturer

onsemi

Manufacturer Product Number

FCD850N80Z

Description

MOSFET N-CH 800V 6A DPAK

Detailed Description

N-Channel 800 V 6A (Tc) 75W (Tc) Surface Mount TO

252AA

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FCD850N80Z	onsemi
Series:	Product Status:
SuperFET® II	Not For New Designs
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
800 V	6A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
10V	850mOhm @ 3A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
4.5V @ 600μA	29 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	1315 pF @ 100 V
FET Feature:	Power Dissipation (Max):
	75W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
TO-252AA	TO-252-3, DPAK (2 Leads + Tab), SC-63
Base Product Number:	
FCD850	

Environmental & Export classification

8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild <a href="general-regarding-numbers-n

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries,

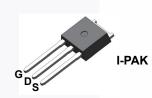
October 2014

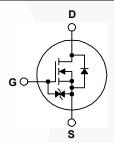
FCD850N80Z / FCU850N80Z N-Channel SuperFET® II MOSFET

800 V, 6 A, 850 mΩ

Features

- Typ. $R_{DS(on)} = 710 \text{ m}\Omega \text{ (Typ.)}$
- Ultra Low Gate Charge (Typ. Q_g = 22 nC)
- Low E_{oss} (Typ. 2.3 uJ @ 400V)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 106 pF)
- 100% Avalanche Tested
- RoHS Compliant
- · ESD Improved Capability


Applications


- · AC DC Power Supply
- · LED Lighting

Description

SuperFET® II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. In addition, internal gate-source ESD diode allows to withstand over 2kV HBM surge stress.Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as Audio, Laptop adapter, Lighting, ATX power and industrial power applications.

$\textbf{Absolute Maximum Ratings} \ T_{\text{C}} = 25^{\text{o}} \text{Cunless otherwise noted}.$

Symbol		Parameter Parameter			Unit
V _{DSS}	Drain to Source Voltage			800	V
V	Cata to Source Voltage	- DC		±20	V
V_{GSS}	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	V
	Drain Current	- Continuous (T _C = 25°C)		6	А
ID	Drain Current	- Continuous (T _C = 100°C)		3.8	_ A
I _{DM}	Drain Current	- Pulsed	(Note 1)	18	Α
E _{AS}	Single Pulsed Avalanche Energ	ЗУ	(Note 2)	114	mJ
I _{AR}	Avalanche Current		(Note 1)	1.2	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	0.284	mJ
dv/dt	MOSFET dv/dt			100	V/ns
αν/αι	Peak Diode Recovery dv/dt		(Note 3)	20	V/IIS
D	Pawer Discinstian	(T _C = 25°C)		75	W
P_{D}	Power Dissipation	- Derate Above 25°C		0.6	W/°C
T _J , T _{STG}	Operating and Storage Temper	Operating and Storage Temperature Range			°C
TL	Maximum Lead Temperature for	or Soldering, 1/8" from Case for 5 Se	econds	300	°C

Thermal Characteristics

Symbol	Parameter	FCD850N80Z FCU850N80Z	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.65	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max.	100	*C/VV

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FCD850N80Z	FCD850N80Z	DPAK	Tape and Reel	330 mm	16 mm	2500 units
FCU850N80Z	FCU850N80Z	IPAK	Tube	NA	NA	75 units

Electrical Characteristics T_C = 25°C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA, T _J = 25°C	800	-	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C	-	0.8	-	V/°C
7	Zero Gate Voltage Drain Current	V _{DS} = 800 V, V _{GS} = 0 V	-	-	25	μА
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 640 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	-	250	μΑ
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	1	±10	μΑ

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 0.6$ mA	2.5	-	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 3 \text{ A}$	1	710	850	$m\Omega$
9 _{FS}	Forward Transconductance	$V_{DS} = 20 \text{ V}, I_{D} = 3 \text{ A}$	-	3.5	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 400 V V 0 V	-\	990	1315	pF
C _{oss}	Output Capacitance	V _{DS} = 100 V, V _{GS} = 0 V, f = 1 MHz	- \	28	37	pF
C _{rss}	Reverse Transfer Capacitance	-	-	0.74	-	pF
C _{oss}	Output Capacitance	$V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	15	-	pF
C _{oss(eff.)}	Effective Output Capacitance	$V_{DS} = 0 \text{ V to } 480 \text{ V}, V_{GS} = 0 \text{ V}$	-	106	-	pF
Q _{g(tot)}	Total Gate Charge at 10V	V _{DS} = 640 V, I _D = 6 A,	-	22	29	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = 10 V	-	5	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	(Note 4)	-	8.6	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	2.4	-	Ω

Switching Characteristics

$t_{d(on)}$	Turn-On Delay Time		- /	16	42	ns
t _r	Turn-On Rise Time	$V_{DD} = 400 \text{ V}, I_{D} = 6 \text{ A},$	-/	10	30	ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$	-	40	90	ns
t _f	Turn-Off Fall Time	(Note 4)	-	4.5	19	ns

Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	6	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	18	Α
V_{SD}	Drain to Source Diode Forward Voltage V _{GS} = 0 V, I _{SD} = 6 A		-	-	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 6 A,	-	318	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	4.5	-	μС

Notes:

- 1. Repetitive rating: pulse width limited by maximum junction temperature.
- 2. I_{AS} = 1.2 A, V_{DD} = 50 V, R_G = 25 Ω , Starting T_J = 25°C
- 3. $I_{SD} \le 6$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, Starting T_J = 25°C
- 4. Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

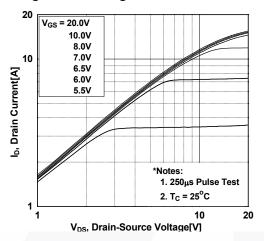


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

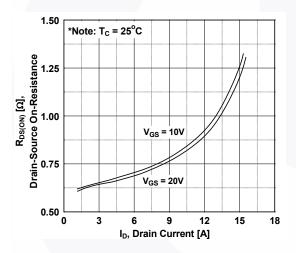
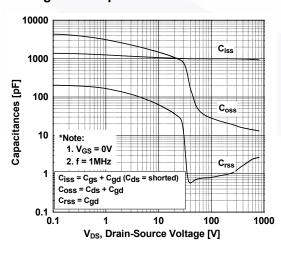



Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

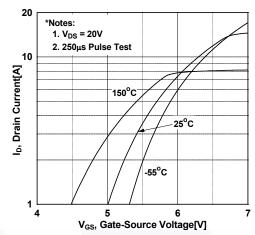


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

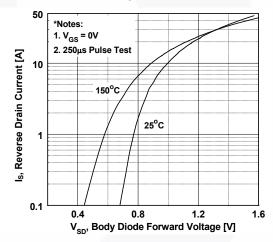
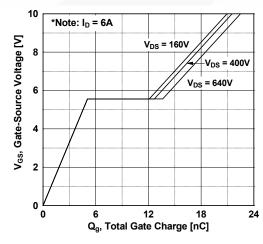



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

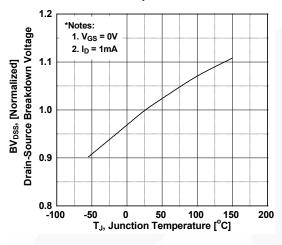


Figure 9. Maximum Safe Operating Area

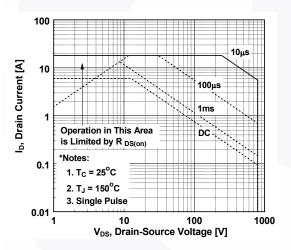


Figure 11. Eoss vs. Drain to Source Voltage

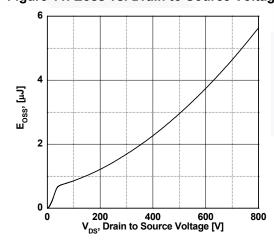


Figure 8. On-Resistance Variation vs. Temperature

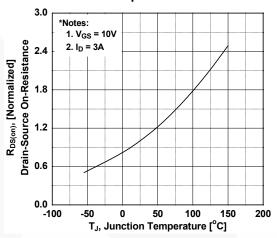
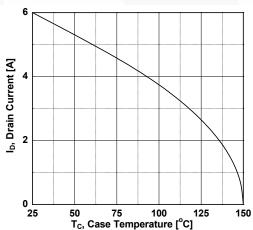
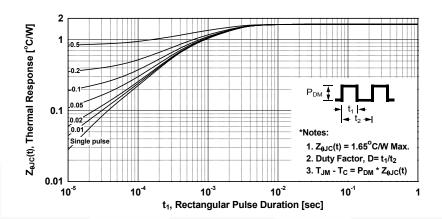




Figure 10. Maximum Drain Current vs. Case Temperature

Typical Performance Characteristics (Continued)

Figure 12. Transient Thermal Response Curve

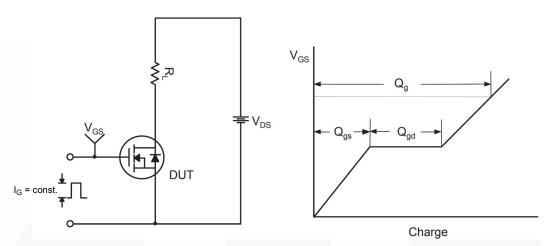


Figure 13. Gate Charge Test Circuit & Waveform

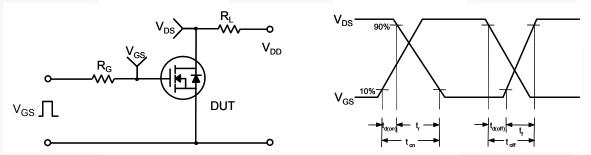


Figure 14. Resistive Switching Test Circuit & Waveforms

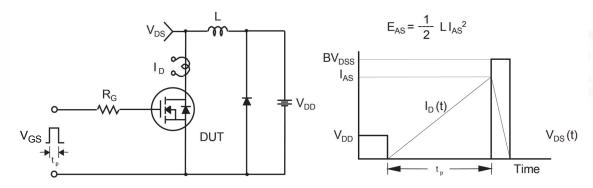


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

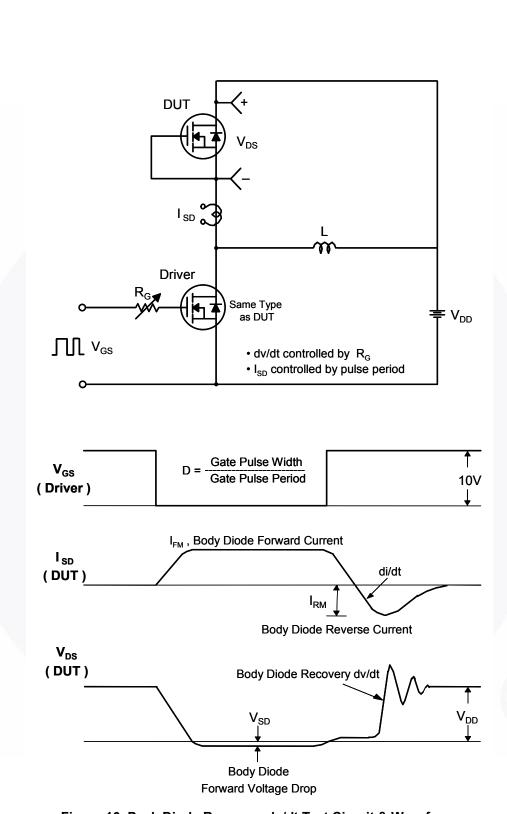
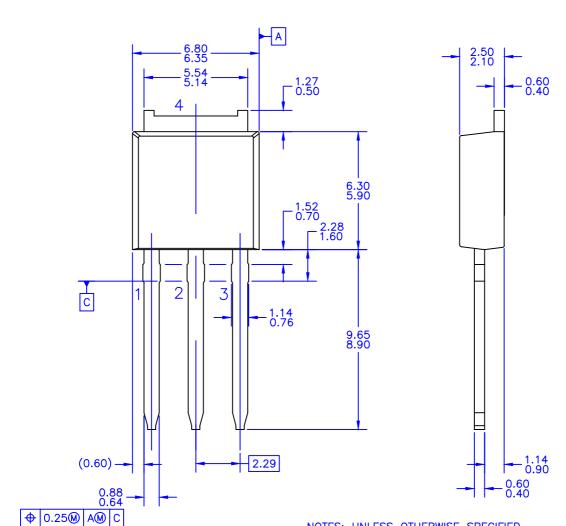
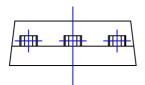
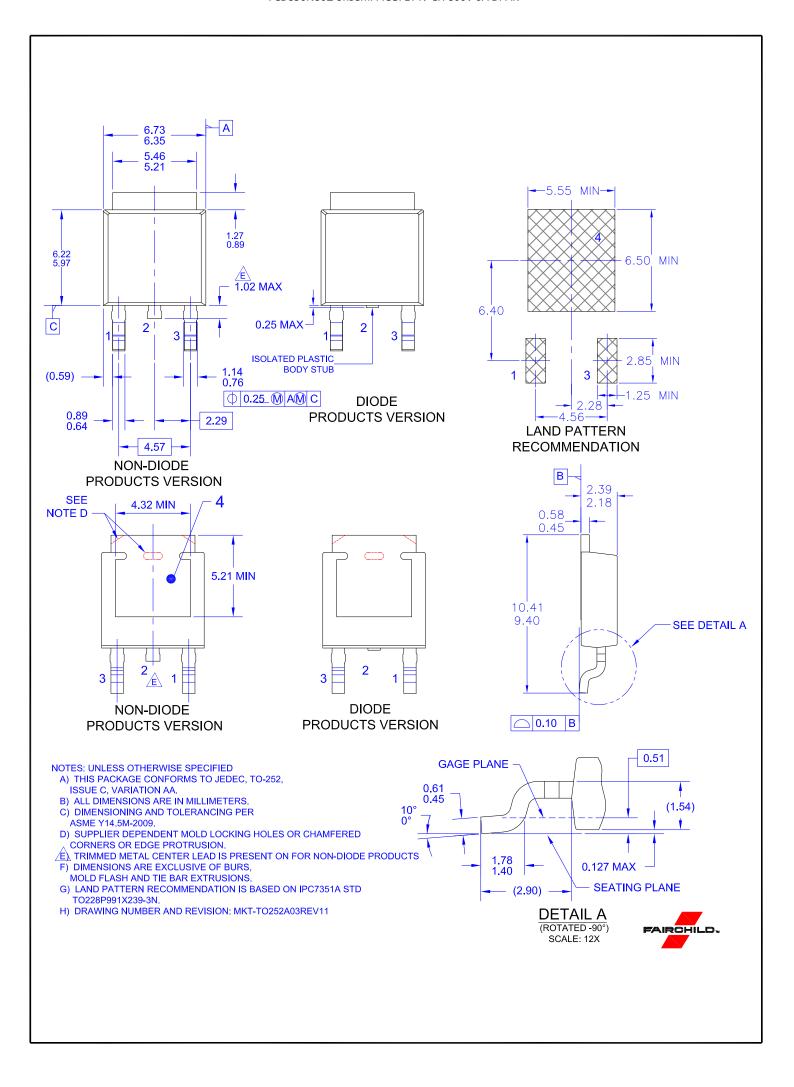




Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms



3 PLCS

- NOTES: UNLESS OTHERWISE SPECIFIED
 - ALL DIMENSIONS ARE IN MILLIMETERS.
 - B) THIS PACKAGE CONFORMS TO JEDEC, TO-251, ISSUE C, VARIATION AA, DATED SEP 1988.
 C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

 - DRAWING NUMBER AND REVISION: MKT-T0251A03REV2 D)

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Europe, Middie East and Africa Technical Supp Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com