

FDD6630A Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number FDD6630A-DG

Manufacturer onsemi

Manufacturer Product Number FDD6630A

Description MOSFET N-CH 30V 21A TO252

Detailed Description N-Channel 30 V 21A (Ta) 28W (Ta) Surface Mount T

O-252AA

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FDD6630A	onsemi
Series:	Product Status:
PowerTrench®	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
30 V	21A (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
4.5V, 10V	35mOhm @ 7.6A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
3V @ 250μA	7 nC @ 5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	462 pF @ 15 V
FET Feature:	Power Dissipation (Max):
	28W (Ta)
Operating Temperature:	Mounting Type:
-55°C ~ 175°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
TO-252AA	TO-252-3, DPAK (2 Leads + Tab), SC-63
Base Product Number:	
FDD6630	

Environmental & Export classification

8541.29.0095

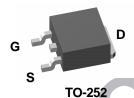
RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

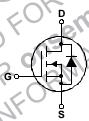
ON Semiconductor®

FDD6630A

30V N-Channel PowerTrench MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.


Applications

- DC/DC converter
- Motor drives

Features

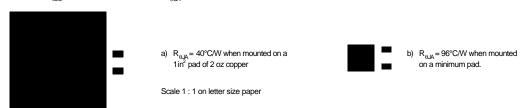
- $R_{DS(ON)}$ = 35 m Ω @ V_{GS} = 10 V• 21 A, 30 V $R_{DS(ON)} = 50 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$
- Low gate charge (5nC typical)
- · Fast switching
- High performance trench technology for extremely low R_{DS(ON)}

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain-Source Voltage	30	V
V _{GSS}	Gate-Source Voltage	±20	V
I _D	Drain Current — Continuous (Note 3)	21	Α
	-Pulsed (Note 1a)	100	
P _D	Power Dissipation (Note 1)	28	W
OK	(Note 1a)	3.2	
15	(Note 1b)	1.3	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +175	°C

Thermal Characteristics

R ₀ JC	Thermal Resistance, Junction-to-Case	(Note 1)	4.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W


Package Marking and Ordering Information

Device Marking	Device	Device Reel Size Tape width		Quantity
FDD6630A	FDD6630A	13"	16mm	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Avalanche Ratings (Note	2)		I	I	
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V _{DD} = 15 V			55	mJ
I _{AR}	Drain-Source Avalanche Current				7.6	Α
Off Char	acteristics		1	I.	I.	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ
IGSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					-1
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1	1.7	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 25°C		-4	15	mV/°C
$R_{DS(on)}$	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, I_D = 7.6 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 6.3 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 7.6 \text{ A}, T_J = 125^{\circ}\text{C}$		28 40 44	35 50 58	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	20			Α
g FS	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 7.6 A$	\mathcal{O}	13		S
Dynamic	Characteristics	20	25		10	
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$	0	462		pF
Coss	Output Capacitance	f = 1.0 MHz	0	113		pF
C _{rss}	Reverse Transfer Capacitance	"WE. OO.	Oz	40		pF
Switchin	g Characteristics (Note 2)	Jan 1 Jan 191			l.	
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		5	11	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		8	17	ns
t _{d(off)}	Turn-Off Delay Time	MICH		17	28	ns
t _f	Turn-Off Fall Time	0, 1/2		13	24	ns
Qg	Total Gate Charge	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 7.6 \text{ A},$		5	7	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 \text{ V}$		2		nC
Q_{gd}	Gate-Drain Charge			1.4		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				· <u> </u>
ls	Maximum Continuous Drain-Source				2.7	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.7 \text{ A}$ (Note 2)		0.8	1.2	V

Notes:

1. R_{Q,A} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{Q,C} is guaranteed by design while R_{Q,CA} is determined by the user's board design.

- 2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%
- 3. Maximum current is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$ where P_D is maximum power dissipation at $T_C = 25$ °C and $R_{DS(on)}$ is at $T_{J(max)}$ and $V_{GS} = 10V$. Package current limitation is 21A

Typical Characteristics

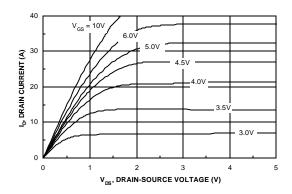
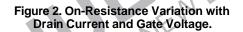
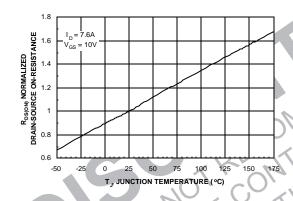




Figure 1. On-Region Characteristics.

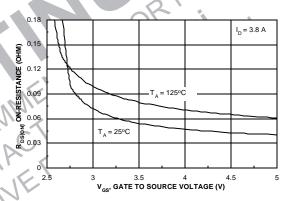
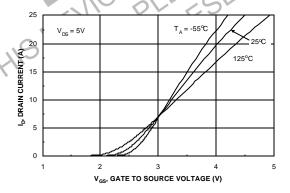



Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

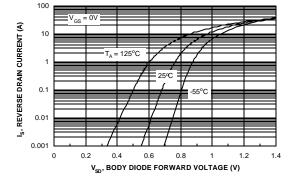
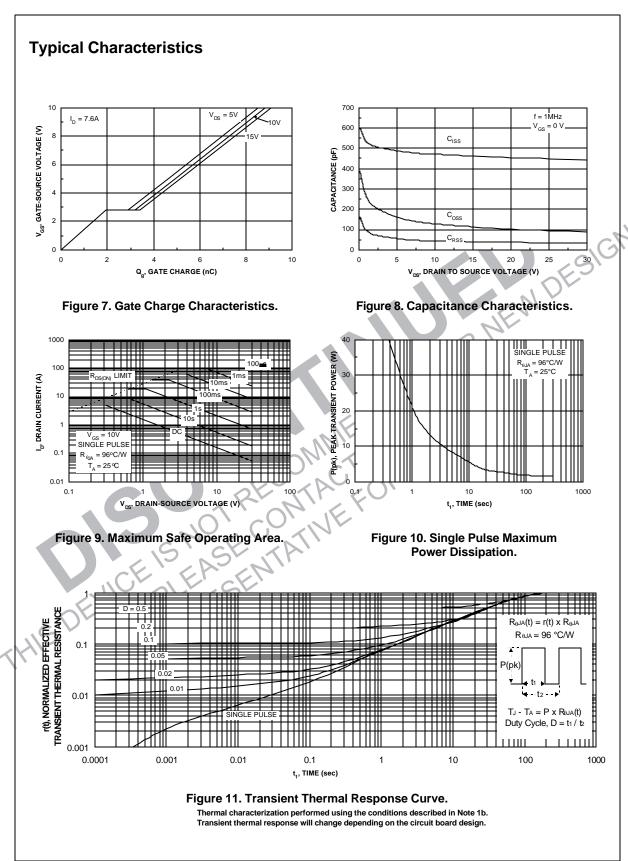



Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com