

FDMC3020DC Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number FDMC3020DC-DG

Manufacturer onsemi

Manufacturer Product Number FDMC3020DC

Description MOSFET N-CH 30V 17A/40A DLCOOL33

Detailed Description N-Channel 30 V 17A (Ta), 40A (Tc) 3W (Ta), 50W (Tc

) Surface Mount Dual Cool ™ 33

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FDMC3020DC	onsemi
Series:	Product Status:
Dual Cool™, PowerTrench®	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
30 V	17A (Ta), 40A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ Id, Vgs:
4.5V, 10V	6.25m0hm @ 12A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
3V @ 250μA	23 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	1385 pF @ 15 V
FET Feature:	Power Dissipation (Max):
	3W (Ta), 50W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
Dual Cool ™ 33	8-PowerTDFN
Base Product Number:	
FDMC3020	

Environmental & Export classification

8541.29.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

www.onsemi.com

MOSFET - N-Channel DUAL **COOL™ 33 POWERTRENCH®**

30 V, 40 A, 6.25 mΩ

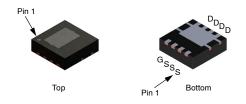
FDMC3020DC

Description

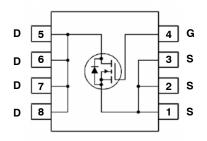
This N-Channel MOSFET is produced using onsemi's advanced POWERTRENCH® process. Advancements in both silicon and DUAL COOL package technologies have been combined to offer the lowest R_{DS(on)} while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

Features

- DUAL COOL™ Top Side Cooling PQFN Package
- Max $R_{DS(on)} = 6.25 \text{ m } \Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 12 \text{ A}$
- Max $R_{DS(on)} = 9.0 \text{ m } \Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 10 \text{ A}$
- High Performance Technology for Extremely Low R_{DS(on)}
- These Device is Pb-Free, Halide Free, and is RoHS Compliant


Typical Applications

- Synchronous Rectifier for DC-DC Converters
- Telecom Secondary Side Rectification
- High End Server/Workstation


MOSFET MAXIMUM RATINGS $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Unit
V _{DS}	Drain to Source Voltage	30	V
V _{GS}	Gate to Source Voltage	±20	V
I _D	Drain Current - Continuous (Package limited) T _C = 25°C - Continuous (Silicon limited)T _C = 25°C - Continuous T _A = 25°C (Note 1 a) - Pulsed	40 70 17 100	А
E _{AS}	Single Pulse Avalanche Energy (Note 3)	60	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 4)	1.6	V/ns
P _D	Power Dissipation T _C = 25°C	50	W
	Power Dissipation T _A = 25°C (Note 1 a)	3.0	**
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

PQFN8 3.3X3.3, 0.65P CASE 483AL

MARKING DIAGRAM

= Specific Device Code Α = Assembly Plant Code YW = 3-Date Code (Year & Week) Ζ

= Lot Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMC3020DC	PQFN8 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\textbf{ELECTRICAL CHARACTERISTICS} \quad \textbf{T}_J = 25^{\circ} C \text{ unless otherwise noted}$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Chara	cteristics		•		•	
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30	_	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	17	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	_	_	1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.9	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	-6	-	mV/°C
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 12 A	_	5.0	6.25	mΩ
. ,		$V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A},$ $V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}, T_J = 125^{\circ}\text{C}$	-	7.2 7.5	9.0 9.1	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_D = 12 \text{ A}$	-	44	-	S
Dynamic (Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	1038	1385	pF
C _{oss}	Output Capacitance		_	513	685	pF
C_{rss}	Reverse Transfer Capacitance		_	87	135	pF
R_{g}	Gate Resistance		0.1	0.9	2.0	Ω
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15 V, I _D = 12 A,	_	9	18	ns
t _r	Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	_	3	10	ns
t _{d(off)}	Turn-Off Delay Time	7	_	19	35	ns
t _f	Fall Time	7	_	2	10	ns
Q _{g(TOT)}	Total Gate Charge	V _{GS} = 0 V, to 10 V, V _{DD} = 15 V, I _D = 12 A	_	15.5	23	nC
	Total Gate Charge	V _{GS} = 0 V, to 4.5 V, V _{DD} = 15 V, I _D = 12 A	-	7.1	10.6	nC
Q _{gs}	Gate to Source Gate Charge	V _{DD} = 15 V, I _D = 12 A	_	3	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	2.5	-	nC
Drain-Sou	urce Diode Characteristics					
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 12 A (Note 2)	-	0.82	1.3	V
		V _{GS} = 0 V, I _S = 1.9 A (Note 2)	-	0.73	1.2	
t _{rr}	Reverse Recovery Time	I _F = 12 A, di/dt = 100 A/μs	_	25	45	ns
Q _{rr}	Reverse Recovery Charge	7	_	9	18	nC

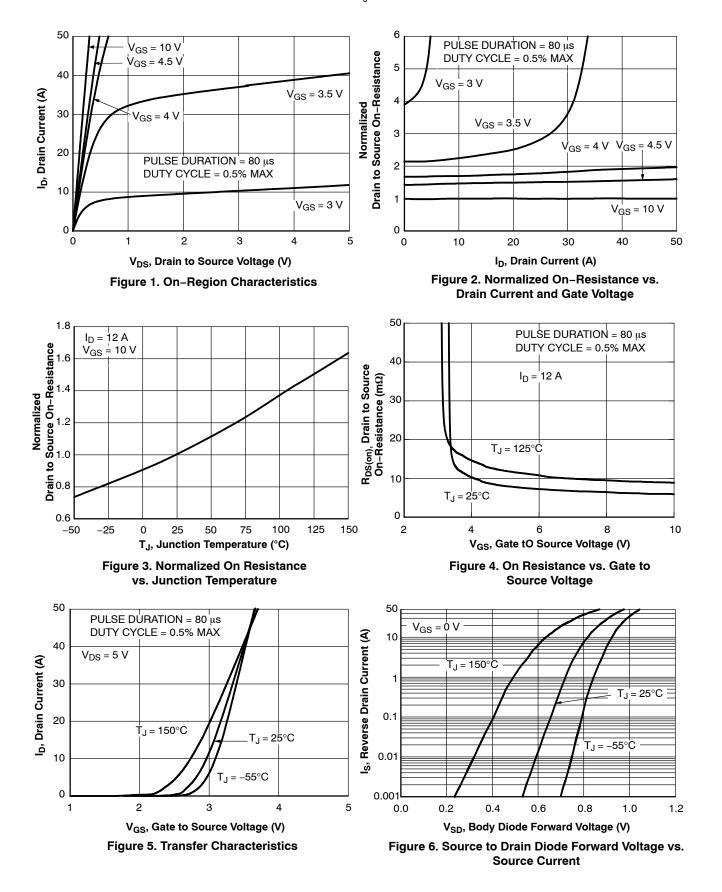
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case (Top Source)	7.9	°C/W
	Thermal Resistance, Junction to Case (Bottom Drain)	2.5	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	42	
	Thermal Resistance, Junction to Ambient (Note 1b)	105	
	Thermal Resistance, Junction to Ambient (Note 1c)	29	
	Thermal Resistance, Junction to Ambient (Note 1d)	40	
	Thermal Resistance, Junction to Ambient (Note 1e)	19	
	Thermal Resistance, Junction to Ambient (Note 1f)	23	
	Thermal Resistance, Junction to Ambient (Note 1g)	30	
	Thermal Resistance, Junction to Ambient (Note 1h)	79	
	Thermal Resistance, Junction to Ambient (Note 1i)	17	
	Thermal Resistance, Junction to Ambient (Note 1 j)	26	
	Thermal Resistance, Junction to Ambient (Note 1k)	12	
	Thermal Resistance, Junction to Ambient (Note 1I)	16	

NOTES:

1. R_{6JA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{6JC} is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.


a) 42 °C/W when mounted on a 1 in² pad of 2 oz copper.

b) 105 °C/W when mounted on a minimum pad of 2 oz copper.

- c) Still air, 20.9 x 10.4 x 12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- d) Still air, 20.9 x 10.4 x 12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- e) Still air, 45.2 x 41.4 x 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- f) Still air, 45.2 x 41.4 x 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- g) 200FPM Airflow, No Heat Sink,1 in² pad of 2 oz copper
- h) 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper
- i) 200FPM Airflow, 20.9 x 10.4 x 12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- j) 200FPM Airflow, 20.9 x 10.4 x 12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- k) 200FPM Airflow, 45.2 x 41.4 x 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- I) 200FPM Airflow, 45.2 x 41.4 x 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- 2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.
- 3. E_{AS} of 60 mJ is based on starting T_J = 25°C, L = 1 mH, I_{AS} = 11 A, V_{DD} = 27 V, V_{GS} =10 V. 4. I_{SD} \leq 12 A, di/dt \leq 100 A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C.

TYPICAL CHARACTERISTICS T_J = 25°C UNLESS OTHERWISE NOTED

TYPICAL CHARACTERISTICS (CONTINUED) T. I = 25°C UNLESS OTHERWISE NOTED

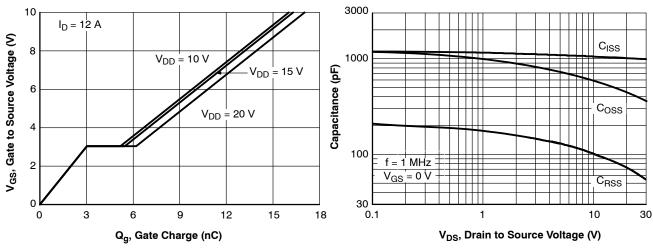


Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs. Drain to Source Voltage

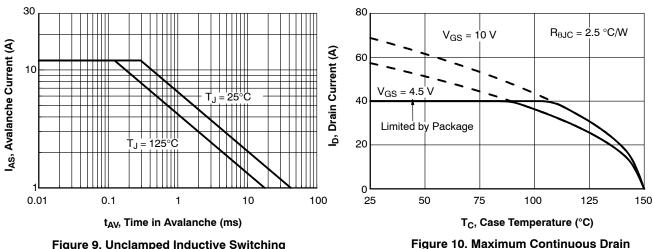


Figure 9. Unclamped Inductive Switching Capability

300

100

0.001

0.01

2000 1000 SINGLE PULSE $R_{\theta JA} = 105^{\circ}C/W$ $T_{A} = 25^{\circ}C$

Current vs. Case Temperature

V_{DS}, Drain to Source Voltage (V)

Figure 11. Forward Bias Safe Operating Area

t, Pulse Width (s)
Figure 12. Single Pulse Maximum Power Dissipation

1000

 10^{-1}

100 200

0.5

 10^{-4}

TYPICAL CHARACTERISTICS (CONTINUED) T_J = 25°C UNLESS OTHERWISE NOTED

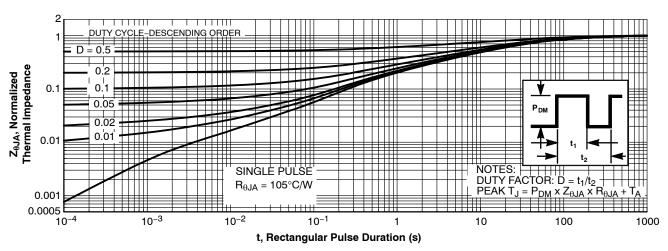


Figure 13. Junction-to-Ambient Transient Thermal Response Curve

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

PIN 1 IDENTIFICATION

⊕ 0.10 C A B

(E5) (4X)

(4x)

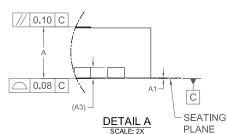
PQFN8 3.30x3.30x1.00, 0.65P CASE 483AL **ISSUE B**

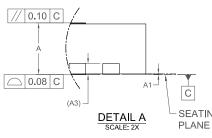
DATE 20 DEC 2023

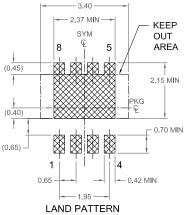
Α (D4) В 5 8 (E4)

D3 -

FRONT VIEW


TOP VIEW


4


e2

(z1) (2x)

SEE DETAIL 'A'

RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS. PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.

DIM	MILLIMETERS				
Diivi	MIN.	NOM.	MAX.		
Α	0.90	1.00	1.10		
A1	0.00	-	0.05		
b	0.27	0.32	0.37		
А3	(0.20 REF			
D	3.20	3.30	3.40		
D2	2.17	2.27	2.37		
D3	1.40	1.55	1.70		
D4	0.63 REF				
E	3.20 3.30 3.40				
E2	1.90	2.00	2.10		
E3	2.10	2.25	2.40		
E4	0.56 REF				
E5	(0.20 REF			
е	0.65 BSC				
e1	1.95 BSC				
e2	0.98 BSC				
L	0.30	0.40	0.50		
L4	0.29	0.39	0.49		
Z	0.52 REF				
z1	0.52 REF				

GENERIC MARKING DIAGRAM*

BOTTOM VIEW

XX = Specific Device Code = Assembly Location

= Year W = Work Week

= Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

	DOCUMENT NUMBER:	98AON13661G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
Γ	DESCRIPTION:	PQFN8 3.30x3.30x1.00, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com