

FDMS3610S Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	
Manufacturer	

Manufacturer Product Number

and the second second

Description

Detailed Description

FDMS3610S-DG

onsemi

FDMS3610S

MOSFET 2N-CH 25V 17.5/30A PWR56

Mosfet Array 25V 17.5A, 30A 1W Surface Mount Pow er56

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FDMS3610S	onsemi
Series:	Product Status:
PowerTrench®	Obsolete
Technology:	Configuration:
MOSFET (Metal Oxide)	2 N-Channel (Dual) Asymmetrical
FET Feature:	Drain to Source Voltage (Vdss):
Logic Level Gate	25V
Current - Continuous Drain (ld) @ 25°C:	Rds On (Max) @ ld, Vgs:
17.5A, 30A	5mOhm @ 17.5A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
2V @ 250µA	26nC @ 10V
Input Capacitance (Ciss) (Max) @ Vds:	Power - Max:
1570pF @ 13V	1W
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Package / Case:	Supplier Device Package:
8-PowerTDFN	Power56
Base Product Number:	
FDMS3610	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign juryiscition or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or u

FDMS3610S PowerTrench[®] Power Stage 25V Asymmetric Dual N-Channel MOSFET

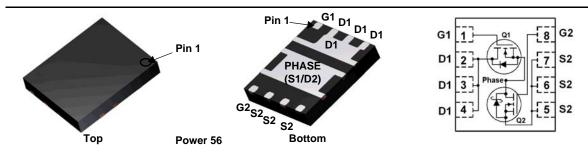
Features

Q1: N-Channel

- Max $r_{DS(on)} = 5.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 17.5 \text{ A}$
- Max $r_{DS(on)}$ = 5.7 m Ω at V_{GS} = 4.5 V, I_D = 16 A

Q2: N-Channel

- Max $r_{DS(on)}$ = 1.8 m Ω at V_{GS} = 10 V, I_D = 30 A
- Max $r_{DS(on)}$ = 2.2 m Ω at V_{GS} = 4.5 V, I_D = 27 A
- Low inductance packaging shortens rise/fall times, resulting in lower switching losses
- MOSFET integration enables optimum layout for lower circuit inductance and reduced switch node ringing
- RoHS Compliant



General Description

This device includes two specialized N-Channel MOSFETs in a dual PQFN package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFET (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load
- Notebook VCORE

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain to Source Voltage		25	25	V
V _{GS}	Gate to Source Voltage	(Note 4)	±12	±12	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C	30	60	
I _D	-Continuous	T _A = 25 °C	17.5 ^{1a}	30 ^{1b}	А
	-Pulsed		70	120	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	29	86	mJ
Р	Power Dissipation for Single Operation	T _A = 25 °C	2.2 ^{1a}	2.5 ^{1b}	W
P _D	Power Dissipation for Single Operation	T _A = 25 °C	1.0 ^{1c}	1.0 ^{1d}	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	57 ^{1a}	50 ^{1b}	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	125 ^{1c}	120 ^{1d}	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	3.0	2.2	

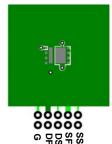
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
08OD 07OD	FDMS3610S	Power 56	13 "	12 mm	3000 units

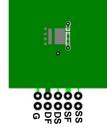
December 2011

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Char	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$ $I_D = 1 \ m A, \ V_{GS} = 0 \ V$	Q1 Q2	25 25			V
ΔΒV _{DSS} ΔΤ _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = 10 \ m$ A, referenced to 25 °C	Q1 Q2		12 24		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V	Q1 Q2			1 500	μΑ μΑ
I _{GSS}	Gate to Source Leakage Current	V_{GS} = 12 V/-8 V, V_{DS} = 0 V	Q1 Q2			±100 ±100	nA nA
On Char	acteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$ $V_{GS} = V_{DS}, I_D = 1 \ m A$	Q1 Q2	0.8 1.1	1.2 1.4	2.0 2.2	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = 10 \ m$ A, referenced to 25 °C	Q1 Q2		-4 -3		mV/°C
	Drain to Source On Resistance	$ \begin{array}{c} V_{GS} = 10 \text{ V}, \ I_D = 17.5 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \ I_D = 16 \text{ A} \\ V_{GS} = 10 \text{ V}, \ I_D = 17.5 \text{ A}, T_J = 125 \ ^\circ\text{C} \end{array} $	Q1		3.8 4.4 5.4	5.0 5.7 7.0	- mΩ
r					1.5	1.8	1115.2
r DS(on)	Drain to Source On Resistance		Q2		1.8 2.1	2.2 2.7	

C _{iss}	Input Capacitance	Q1: V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2	1570 4045	pF
C _{oss}	Output Capacitance	Q2:	Q1 Q2	448 946	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2	61 117	pF
Rg	Gate Resistance		Q1 Q2	0.4 0.9	Ω


Switching Characteristics

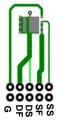
t _{d(on)}	Turn-On Delay Time	_		Q1 Q2	7 11	ns
t _r	Rise Time	Q1: V _{DD} = 13 V, I _D = 17	.5 A, R _{GEN} = 6 Ω	Q1 Q2	2 5	ns
t _{d(off)}	Turn-Off Delay Time	Q2: V _{DD} = 13 V, I _D = 30	$A = R_{0} = 6.0$	Q1 Q2	23 39	ns
t _f	Fall Time		, NGEN - 0 32	Q1 Q2	2 4	ns
Qg	Total Gate Charge	$V_{GS} = 0$ V to 10 V		Q1 Q2	26 59	nC
Qg	Total Gate Charge	$V_{GS} = 0$ V to 4.5 V	V _{DD} = 13 V, I _D = 17.5 A	Q1 Q2	12 27	nC
Q _{gs}	Gate to Source Gate Charge		Q2 V _{DD} = 13 V,	Q1 Q2	3.3 8.2	nC
Q _{gd}	Gate to Drain "Miller" Charge		$I_{\rm D} = 30 {\rm A}$	Q1 Q2	2.7 7.6	nC


Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-So	urce Diode Characteristics						
V	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 17.5 A$ (Note 2)	Q1		0.8	1.2	V
V _{SD}	Source to Drain Diode Forward Voltage		Q2		0.8	1.2	V
		Q1	Q1		23		
t _{rr}	Reverse Recovery Time	I _F = 17.5 A, di/dt = 100 A/μs	Q2		28		ns
<u>^</u>	David David Olaria	Q2	Q1		9		
Q _{rr}	Reverse Recovery Charge	I _F = 30 A, di/dt = 300 A/μs	Q2		28	1	nC

Notes:

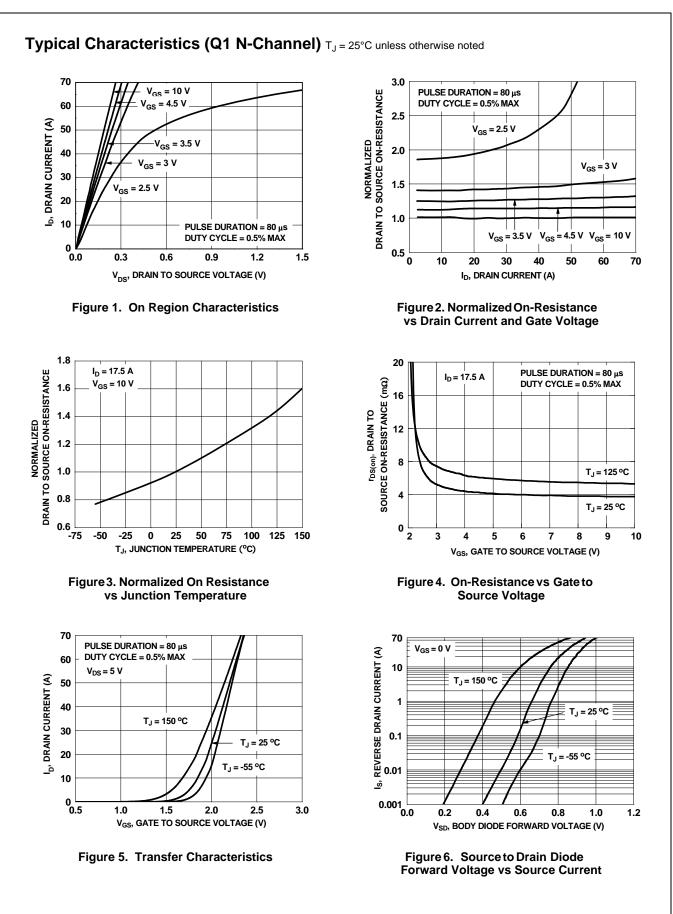
1.R_{8JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

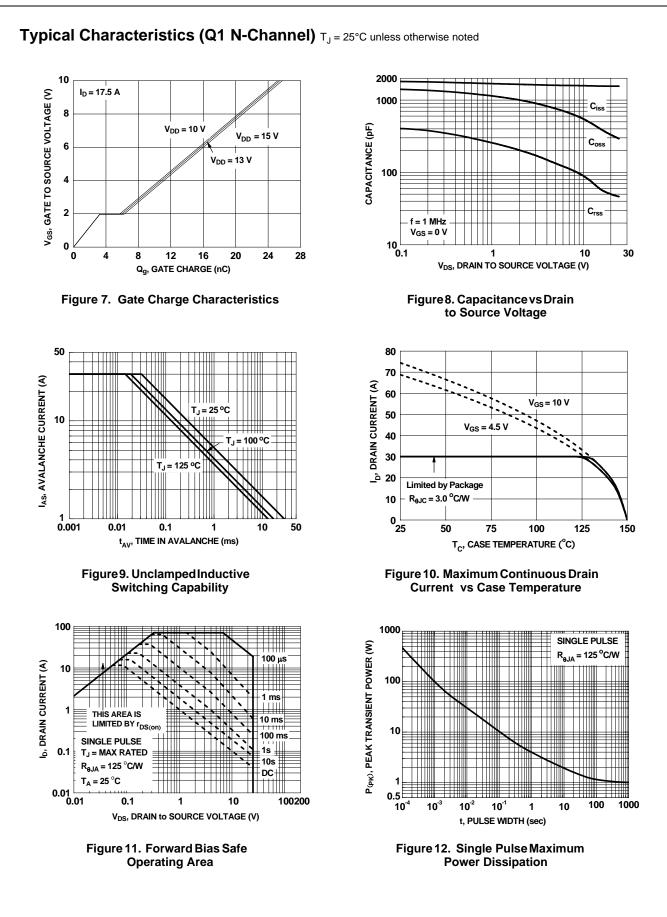
a. 57 °C/W when mounted on a 1 in² pad of 2 oz copper

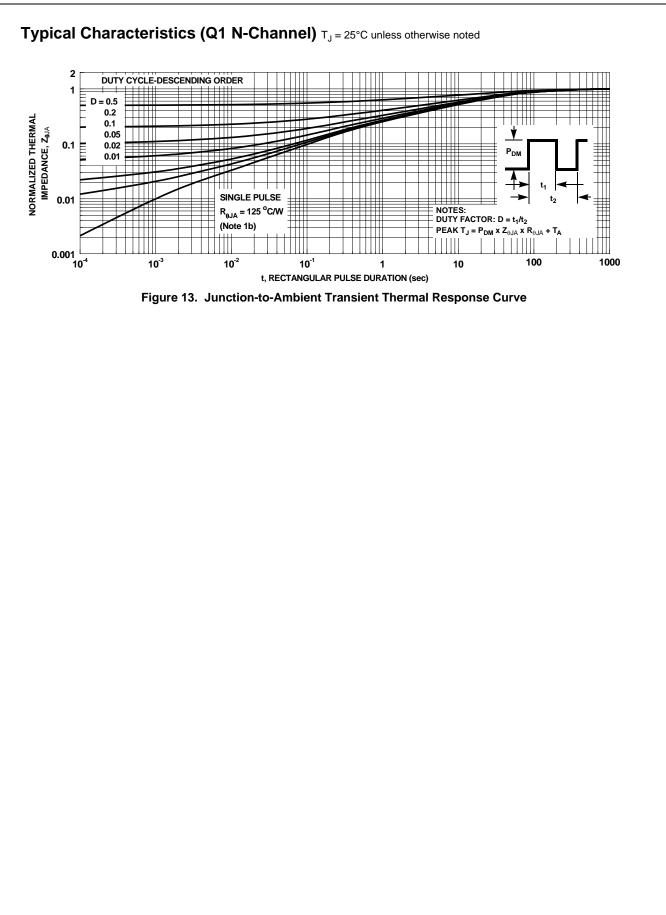

b. 50 °C/W when mounted on a 1 in² pad of 2 oz copper

2 Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

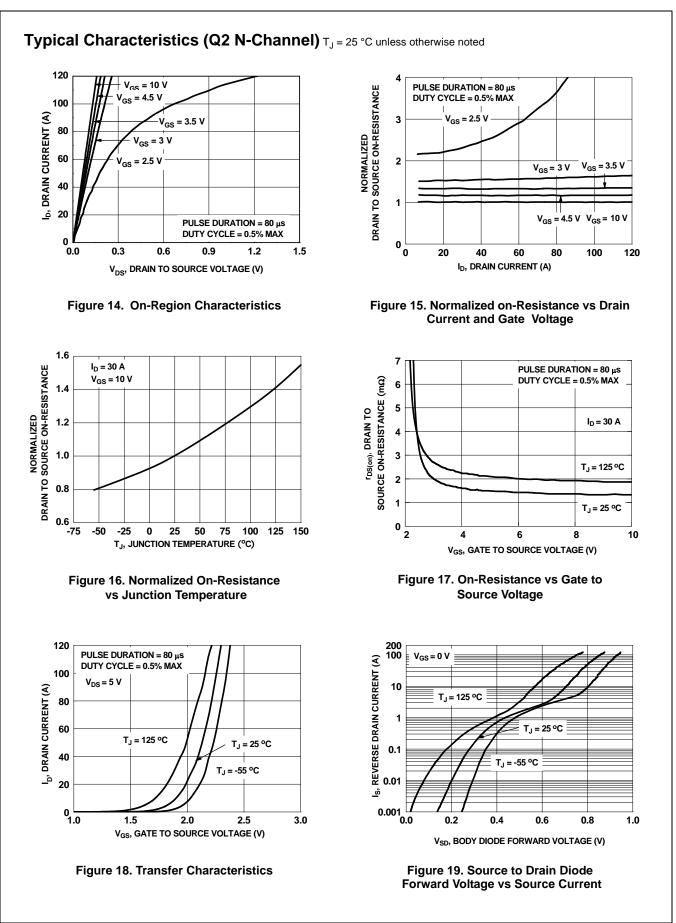
c. 125 °C/W when mounted on a minimum pad of 2 oz copper

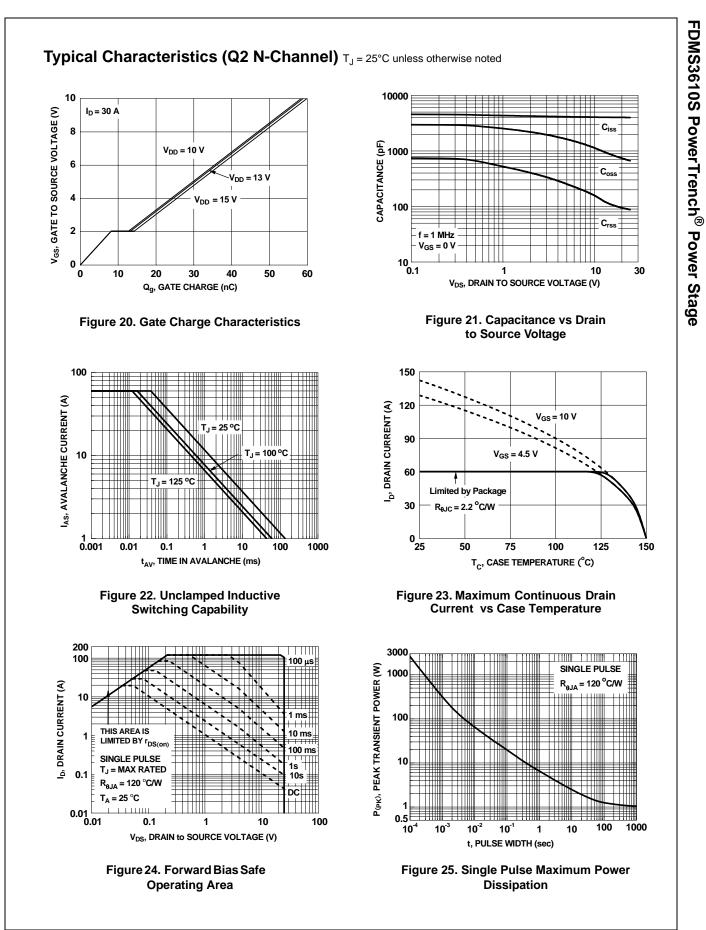

3. Q1 : E_{AS} of 29 mJ is based on starting T_J = 25 o C; N-ch: L = 1.2 mH, I_{AS} = 7 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 16 A. Q2: E_{AS} of 86 mJ is based on starting T_J = 25 o C; N-ch: L = 0.6 mH, I_{AS} = 17 A, V_{DD} = 23 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 31 A.

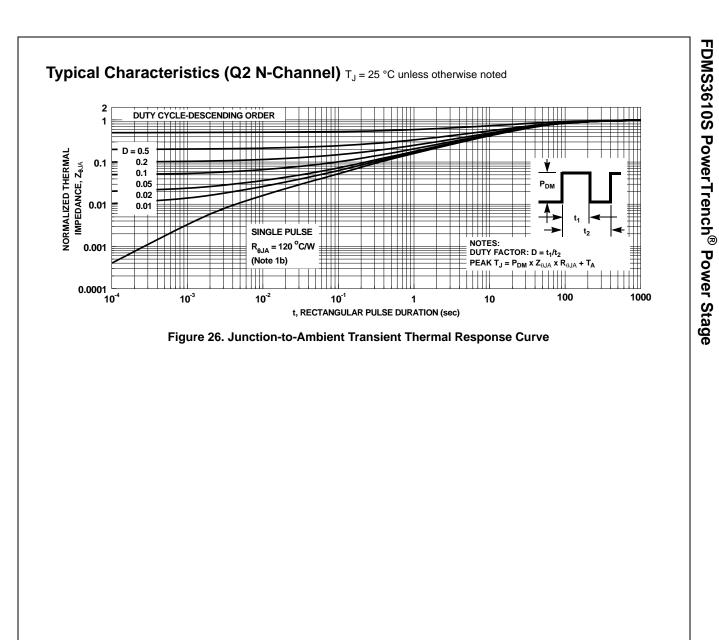

4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.



d. 120 °C/W when mounted on a minimum pad of 2 oz copper







FDMS3610S PowerTrench[®] Power Stage

FDMS3610S PowerTrench[®] Power Stage

Typical Characteristics (continued)

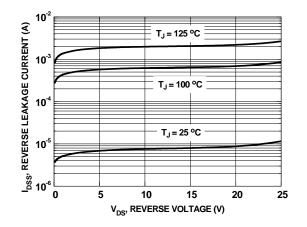
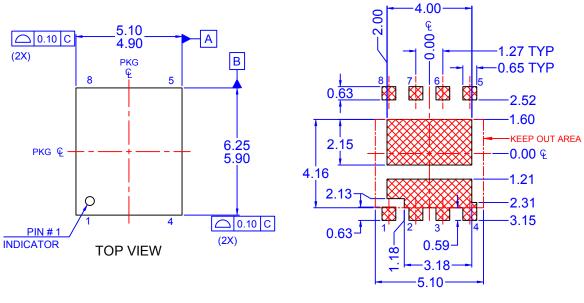
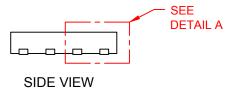
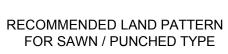
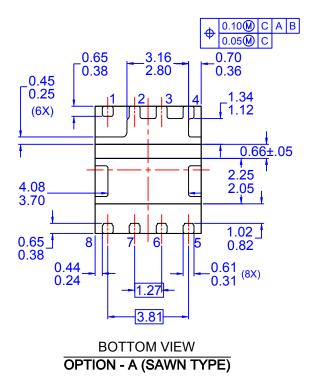
SyncFET Schottky body diode Characteristics

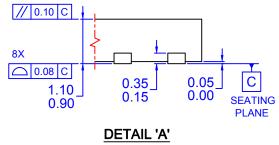
Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDMS3610S.

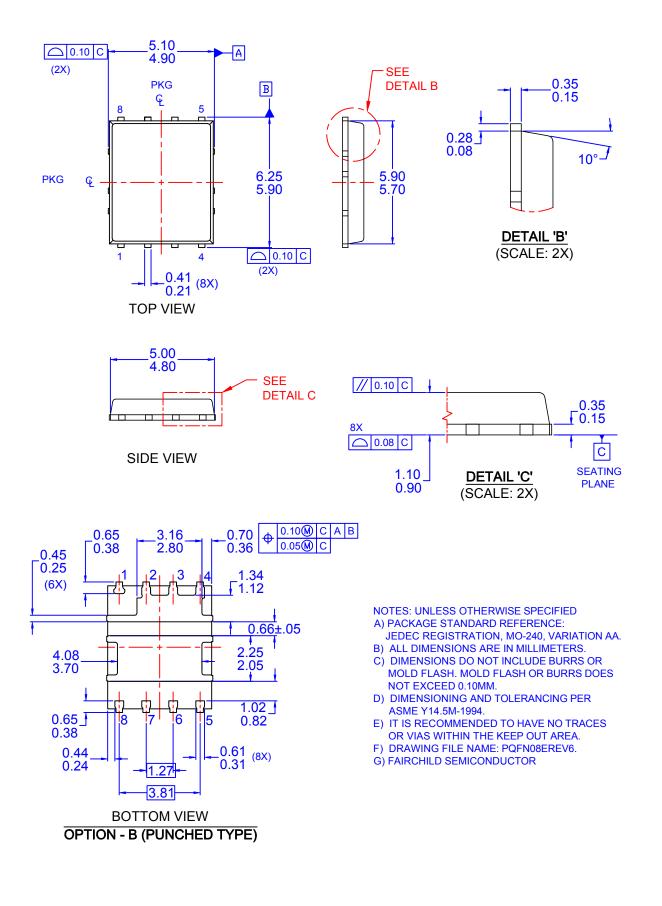
 $\begin{array}{c} 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 5 \\ 0 \\ -5 \\ 0 \\ 40 \\ 80 \\ 120 \\ 160 \\ 200 \\ 240 \\ 280 \\ 320 \\ 360 \\ TIME (ns) \end{array}$

Figure 27. FDMS3610S SyncFET body diode reverse recovery characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.


Figure 28. SyncFET body diode reverse leakage versus drain-source voltage



(SCALE: 2X)

FDMS3610S onsemi MOSFET 2N-CH 25V 17.5/30A PWR56

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and dis

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.