

FDMS7658AS Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	FDMS7658AS-DG
Didi Liectionics Part Number	20-54050 (51410-1
Manufacturer	onsemi
Manufacturer Product Number	FDMS7658AS
Description	MOSFET N-CH 30V 29A/70A 8PQFN
Detailed Description	N-Channel 30 V 29A (Ta), 70A (Tc) 2.5W (Ta), 89W (Tc) Surface Mount 8-PQFN (5x6)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FDMS7658AS	onsemi
Series:	Product Status:
PowerTrench [®] , SyncFET™	Obsolete
FET Type:	Technology:
N-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (ld) @ 25°C:
30 V	29A (Ta), 70A (Tc)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
4.5V, 10V	1.9mOhm @ 28A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
3V @ 1mA	109 nC @ 10 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±20V	7350 pF @ 15 V
FET Feature:	Power Dissipation (Max):
	2.5W (Ta), 89W (Tc)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
8-PQFN (5x6)	8-PowerTDFN
Base Product Number:	
FDMS7658	

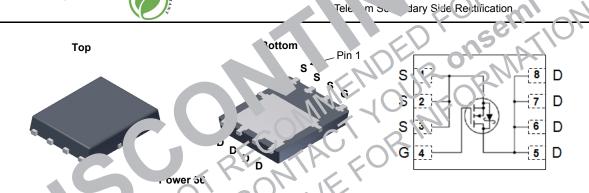
Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

ON Semiconductor®

FDMS7658AS N-Channel PowerTrench[®] SyncFETTM **30 V, 176 A, 1.9 m**Ω

Features


- Max r_{DS(on)} = 1.9 mΩ at V_{GS} = 10 V, I_D = 28 A
- Max r_{DS(on)} = 2.2 mΩ at V_{GS} = 7 V, I_D = 26 A
- Advanced Package and Silicon Combination for Low r_{DS(on)} and High Efficiency
- SyncFETTM Schottky Body Diode
- MSL1 Robust Package Design
- 100% UIL Tested
- RoHS Compliant

General Description

The FDMS7658AS has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been comto offer the lowest r_{DS(on)} while maintaining excellent ching rformance. This device has the added benefit of in e ient mu plithic Schottky body diode.

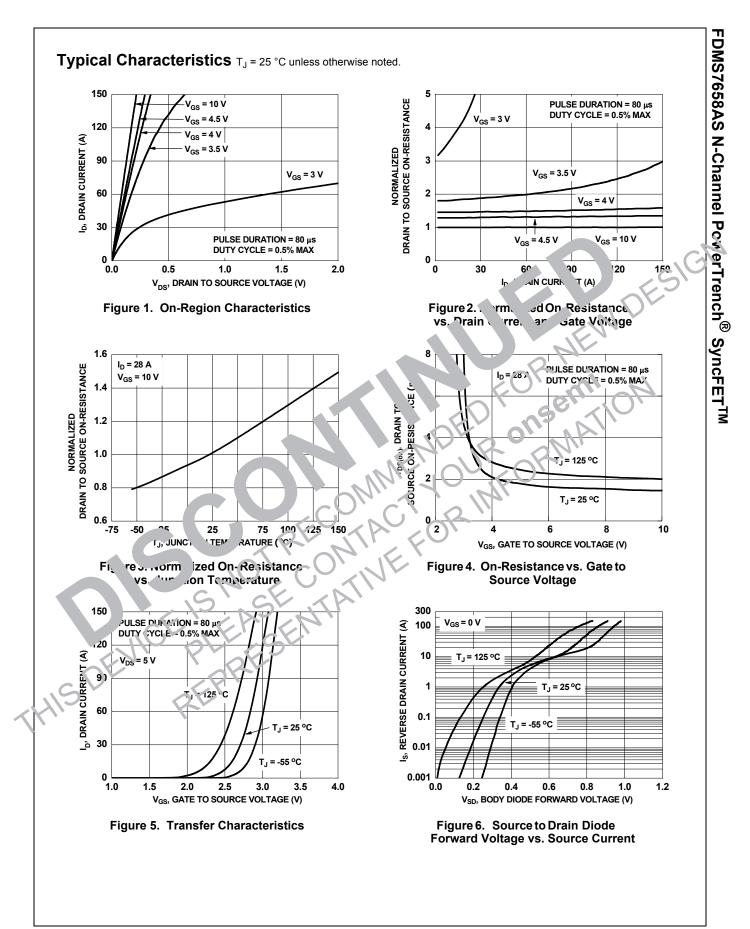
Applications

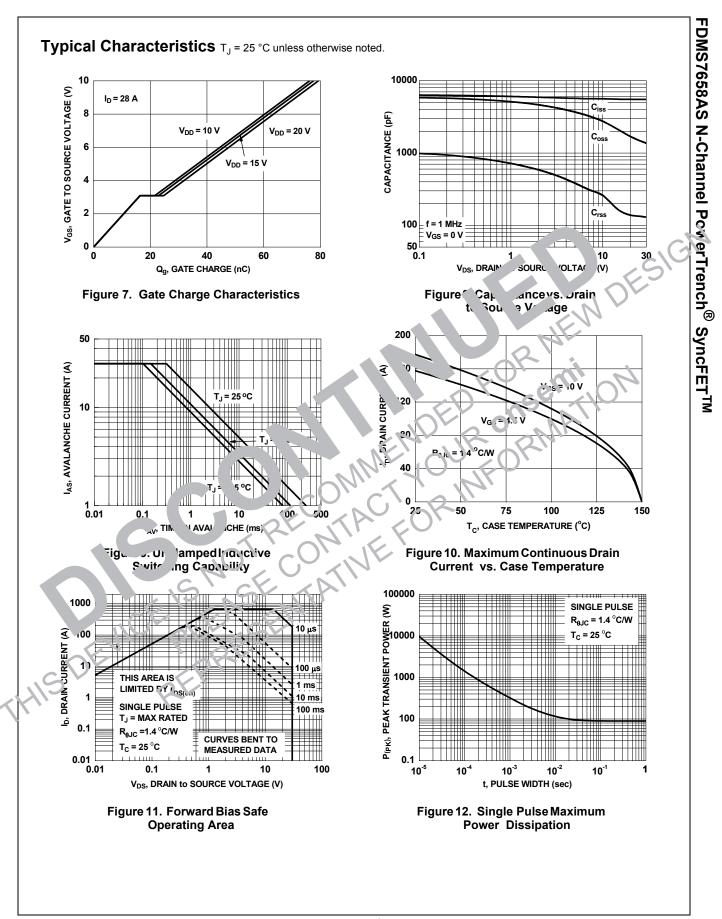
- Synchronour Rectific for L 'D' Jonverters
- Notebo、 Vcc 'GPU w Side Switch.
- ad Lov Side Switch rkins 'oin

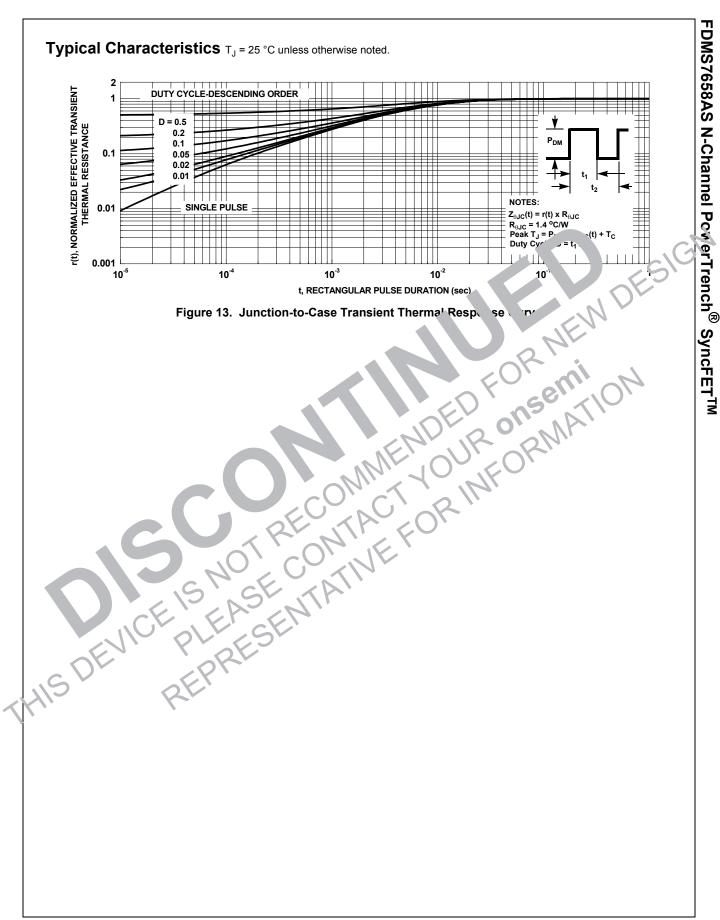
Im Ratings TA = 25 °C unless otherwise noted. <u>'E'</u> MC 12 -

Symbo	Parameter		Ratings	Units	
V _{DL}	Drein to Source Voltage			30	V
V _{GS}	Cate to Sourca Voltage		(Note 4)	±20	V
	Drain Current -Continuous	T _C = 25 °C	(Note 5)	176	
	Co. undous	T _C = 100 °C	(Note 5)	112	Α
	Continuous	T _A = 25 °C	(Note 1a)	29	A
5	-Pulsed		(Note 6)	670	
dv/dt	MOSFE1 dv/dt			1.5	V/ns
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	162	mJ
D	Power Dissipation	T _C = 25 °C		89	w
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

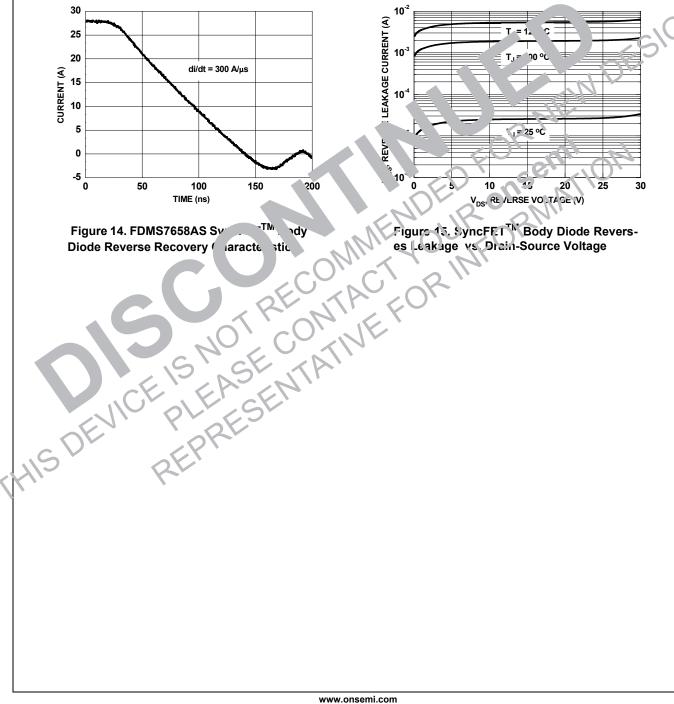

June-2024, Rev.3


$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.4	°C 1.1
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a) 50	°C/W


Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7658AS	FDMS7658AS	Power 56	13 "	12 mm	3000 units

Symbol	Parameter	Test Conditio	ns M	in. Ty	o. Max.	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	3	30		V
ABV _{DSS}	Breakdown Voltage Temperature			-		
ΔT_{J}	Coefficient	$I_D = 10 \text{ mA}, \text{ referenced}$	to 25 °C	23	3	mV/°C
DSS	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			500	μA
GSS	Gate to Source Leakage Current, Forward	V_{GS} = 20 V, V_{DS} = 0 V			100	nA
)n Chara	cteristics (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 1 mA	1	.2 1.7	3.0	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage					
ΔT_{J}	Temperature Coefficient	I _D = 10 mA, referenced	to 25 °C	-5		mV/°C
•		V _{GS} = 10 V, I _D = 28 A		1.5	1.9	
	Statia Drain to Source On Desistance	V _{GS} = 7 V, I _D = 26 A		7	.2	
DS(on)	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 23 A		1.	2.4	- msz
		V _{GS} = 10 V, I _D = 28 A, ⁻	Г _Ј = 12(С	2.0	2.6	
JFS	Forward Transconductance	V _{DS} = 5 V, I _D = 28 A		18		S
Dvnamic	Characteristics				F	
C _{iss}	Input Capacitance		— —	552	5 7350	pF
C _{OSS}	Output Capacitance	$V_{DS} = 15$ $V_G = 0$		202		pF
Srss	Reverse Transfer Capacitance	f = 1 i - i z				pF
₹ _g	Gate Resistance		0.			Ω
y						
Switching	Characteristics		12	201	1	
d(on)	Turn-On Delay Time		\sim	20		ns
ſ	Rise Time	V _{DD} = 15 V, I _D = 28 Λ,		8	17	ns
d(off)	Turn-Off Delay Time	$V_{CS} = 10 \text{ V}, \text{ R}_{GEN} = 3 \Omega$		43		ns
f	Fall Time		2	5	10	ns
Qg	Total Gate C rge	V _{GS} = 0 [∨] 10 V		78		nC
Qg	To' Gale Ch.	$V_{CS} = 0 V \text{ to } 4.5 V V_{DE}$) = 15 V,	35		nC
Q _{gs}	G 'e Gaue Charge		28 A	16.		nC
Q _{gd}	Sate to Dra 'Miller' Charge	1, 1		6.6		nC
ain-S	rc. Diode Characteristics	DI.				
		V _{GS} = 0 V, I _S = 2 A	(Note 2)	0.38	3 0.9	
V _{SD}	Source to Drain Dione Forward Voltage	V _{GS} = 0 V, I _S = 28 A	(Note 2)	0.74	1.3	- V
in .	Reverse Recovery Time		1 -	46	75	ns
2 _{rr}	Reverse Recovery Charge	$-I_{\rm F}$ = 28 A, di/dt = 300 A	/μs	73	117	nC
lotes:	ined with the device nounted on a 1in ² pad 2 oz copper pac rd design.	d on a 1.5 x 1.5 in. board of FR-4 r	naterial. R _{θJC} is guara	nteed by desig	n while R _{0CA} is d	letermined by
	a. 50 °C/W when 1 in ² pad of 2				hen mounted on ad of 2 oz coppe	
	00000		00000			



Typical Characteristics (continued)

SyncFET[™] Schottky body diode Characteristics

ON Semiconductor's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench MoSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverses recovery characteristic of the FDMS7658AS.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

S DEVICE PLEASE NTATIVE

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marchine Marchine Marchine M	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.