

FDS6986AS Datasheet

https://www.DiGi-Electronics.com

DiGi Electronics Part Number FDS6986AS-DG

Manufacturer onsemi

Manufacturer Product Number FDS6986AS

Description MOSFET 2N-CH 30V 6.5A/7.9A 8SOIC

Detailed Description Mosfet Array 30V 6.5A, 7.9A 900mW Surface Mount

8-SOIC

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FDS6986AS	onsemi
Series:	Product Status:
PowerTrench®, SyncFET™	Obsolete
Technology:	Configuration:
MOSFET (Metal Oxide)	2 N-Channel (Dual)
FET Feature:	Drain to Source Voltage (Vdss):
Logic Level Gate	30V
Current - Continuous Drain (ld) @ 25°C:	Rds On (Max) @ Id, Vgs:
6.5A, 7.9A	29mOhm @ 6.5A, 10V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
3V @ 250μA	17nC @ 10V
Input Capacitance (Ciss) (Max) @ Vds:	Power - Max:
720pF @ 10V	900mW
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Package / Case:	Supplier Device Package:
8-SOIC (0.154", 3.90mm Width)	8-SOIC
Base Product Number:	
FDS69	

Environmental & Export classification

8541.21.0095

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	1 (Unlimited)
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	

ON Semiconductor®

FDS6986AS

Dual Notebook Power Supply N-Channel PowerTrench® SyncFET[™] General Description

The FDS6986AS is designed to replace two single SO-8 MOSFETs and Schottky diode in synchronous DC:DC power supplies that provide various peripheral voltages for notebook computers and other battery powered electronic devices. FDS6986AS contains two unique 30V, N-channel, logic level, PowerTrench

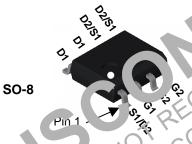
MOSFETs designed to maximize power conversion

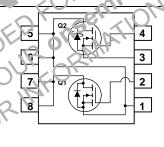
efficiency.

The high-side switch (Q1) is designed with specific emphasis on reducing switching losses while the low-side switch (Q2) is optimized to reduce conduction losses. Q2 also includes an integrated Schottky diode using ON Semiconductor's monolithic SyncFET technology.

Features

 Q2: Optimized to minimize conduction losses Includes SyncFET Schottky body diode


7.9A, 30V
$$R_{DS(on)} = 20 \text{ m}\Omega @ V_{GS} = 10V$$


$$R_{DS(on)} = 2 @ V_{GS} = 4.5$$

Q1: Optimiz u for v swithing lossed Low lite of large 1 alc typical)

6.5A, 30
$$^{\circ}$$
 29 mQ @ $^{\circ}$ $^{\circ}$ = 10V

$$R_{DS(on)} = 38 \text{ m}\Omega @ V_{GS} = 4.5V$$

Absc'... N. X....am Ratings T_A = 25°C unless otherwise noted

Symbo	Parameter		Q2	Q1	Units
V _{DSS}	Drain-Source Voltage		30	30	V
V _{GSS}	Gate-Source Voltage		±20	±16	V
ID	Drain Current - Continuous	(Note 1a)	7.9	6.5	Α
7/1/2	- Pulsed		30	20	
Pο	Power Dissipation for Dual Operation		2		W
	Power Dissipation for Single Operation	(Note 1a)	1.	6	
		(Note 1b)	1		
		(Note 1c)	0.	9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		–55 to	+150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

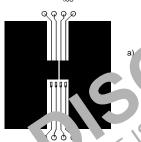
Package Marking and Ordering Information

Device Marking	vice Marking Device		Device Reel Size		Tape width	Quantity
FDS6986AS	FDS6986AS	13"	12mm	2500 units		
FDS6986AS	FDS6986AS-NL (Note 4)	13"	12mm	2500 units		

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	Q2	30			V
	Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \text{ uA}$	Q1	30	0.4		
∆BV _{DSS}	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C	Q2 Q1		31 23		mV/°C
ΔT_J I_{DSS}	Zero Gate Voltage Drain	$I_D = 250 \mu A$, Referenced to 25°C $V_{DS} = 24 \text{ V}$, $V_{GS} = 0 \text{ V}$	Q2		20	500	μА
1055	Current	VDS - 2-7 V, VGS - 0 V	Q1			1	μΑ
GSS	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q2			±100	nA
		$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	Q1			±100	ш
On Cha	racteristics (Note 2)						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	Q2	1	1.7	3	V
		$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	Q1	_1_	1.9	3	2-
$\Delta V_{GS(th)}$	Gate Threshold Voltage	I _D = 1 mA, Referenced to 25°C	Q2		- 5		mV/°Z
ΔT _J	Temperature Coefficient	I _D = 250 uA, Referenced to 25°C	0′_		<u> </u>		<u>D, </u>
$R_{DS(on)}$	Static Drain-Source	$V_{GS} = 10 \text{ V}, I_D = 7.9 \text{ A}$	3		17	20	mΩ
	On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 7.9 \text{ A}, T_J = 125^{\circ}\text{C}$			25 22	32 28	
		$V_{GS} = 4.5 \text{ V}, I_D = 7 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}$	1		21	29	
		$V_{GS} = 10 \text{ V}, I_D = 6.5$		2 /	32	49	
		$V_{GS} = 4.5 \text{ V}, I_D = 6 \text{ A}$		<u> </u>	32	38	
$I_{D(on)}$	On-State Drain Current	$V_{GS} = 10 \text{ V}$ $v_{DS} = t$	Q2 Q1	30	-10	76	Α
g _{FS}	Forward Transconductance	$V_{DS} = \zeta / I_D = 9 A$	C2	- N	25		S
		$I_D = 6.5 \text{ A}$	<u>Qı</u>	5 1/1/1	15		
	c Characteristics	W. OO.	$\angle O$	1			
C_{iss}	Input Capacitance	100000000000000000000000000000000000000	Q2		550		pF
C _{oss}	Output Capacit Ice	$y_{S} = 10 \text{ V}, y_{GS} = 0 \text{ V},$	Q1 Q2		720 180		pF
Ooss	Output Capacit Ice	()= (9 MHz	Q1		120		рі
C _{rss}	Revers Transer acitance	KINICH	Q2		70		pF
	101	CO, "IK	Q1		60		·
R _G	ate esi Je	V _{GS} = 15mV, f = 1.0 MHz	Q2		3.2		Ω
	15.6		Q1		1.2		
Switch.	, Characteristics (Note 2						
t _{d(on)}	Turn-On Delay Time		Q2		9	18	ns
•a(on)	Trinight Boldy Wille		Q1		10	19	110
t _r	Jurn-On Rise Time	$V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$	Q2		6	12	ns
712	OV.	1,, ,,,,,	Q1		4	8	
$t_{a(Off)}$	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6 \Omega$	Q2		25	40	ns
t _f	Turn-Off Fall Time	4	Q1 Q2		24 4	39 8	ns
L†	Turr-On Fair Time		Q1		3	6	113
t _{d(on)}	Turn-On Delay Time		Q2		11	20	ns
	•]	Q1		10	20	
t _r	Turn-On Rise Time	$V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$	Q2		15	26	ns
	Turn Off Dalay Time	V -45V B -60	Q1		9	18	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5V$, $R_{GEN} = 6 \Omega$	Q2 Q1		15 13	26 23	ns
-u(011)		1	ايد		ادا		1
t _f	Turn-Off Fall Time		Q2		6	12	ns

Electrical Characteristics (continued)

T_A = 25°C unless otherwise noted


Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Switchir	ng Characteristics (Note 2)					
$Q_{g(TOT)}$	Total Gate Charge, Vgs = 10V		Q2		10	14	nC
		00.	Q1		12	17	
$\overline{Q_g}$	Total Gate Charge, Vgs = 5V	Q2: V _{DS} = 15 V, I _D = 7.9 A	Q2		5.6	8	nC
9		$V_{DS} = 15 \text{ V}, I_D = 7.9 \text{ A}$	Q1		6.5	9	
$\overline{Q_gs}$	Gate-Source Charge	Q1:	Q2		2.0		nC
3 -		V _{DS} = 15 V. I _D = 6.5 A	Q1		2.3		
$\overline{Q_{gd}}$	Gate-Drain Charge	V _{DS} = 13 V, 1 _D = 0.3 A	Q2		1.5		nC
3.			Q1		2.1		

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-So	ource Diode Forward Current			3.0	A
			Q1		1.3	
T_{rr}	Reverse Recovery Time	$I_F = 10 \text{ A},$	Q2	15	/	lis
Qrr	Reverse Recovery Charge	$d_{iF}/d_t = 300 \text{ A/}\mu\text{s} \qquad \text{(Note 3)}$			OF	nC
Trr	Reverse Recovery Time	I _F = 6.5 A,	<u>2</u> 1	20		ns
Qrr	Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$ (Note		12		nC
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.3 \text{ A}$ $V_{GS} = 0 \text{ V}, I_S = 1.7 \text{ A}$	Q1	0.6 0.8	0.7 1.2	V

Notes

1. R_{auA} is the sum of the junction-to-case and case-to-ambient therm resistan, where u case therma reference is derived as the solder mounting surface of the drain pins. R_{auC} is guaranteed by design while R_{acA} is determine by the u is board design.

, C/V hen mounted 0.5in ad of 2 oz cr per

1.25°C/W when mounted in a 0.02 in a pad of 2 oz conner

9999

135°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

- 2. Pulse Test: F ilse Width < 300 μ s, Duty Cycle < 2.0%
- 3. See 'S rocket Schottky body dioce haracteristics' below.
- 4. FDS6986AS-NL is a lead free product. FDS6986AS-NL marking will appear on the reel label.

Typical Characteristics: Q2

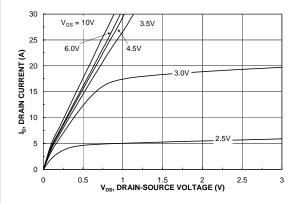


Figure 1. On-Region Characteristics.

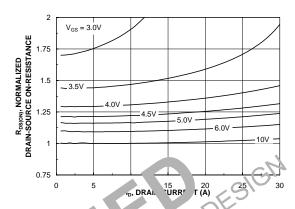


Figure 2. n-1 sist lice Variation with D in Core and Gate Voltage.

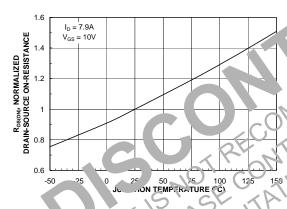


Fig e 3 On-Resistance Variation with Vernperature.

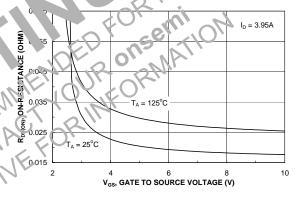


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

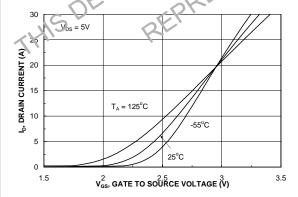


Figure 5. Transfer Characteristics.

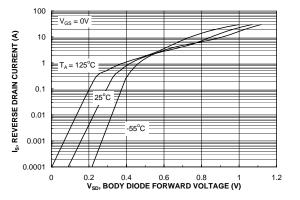
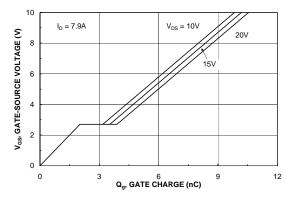
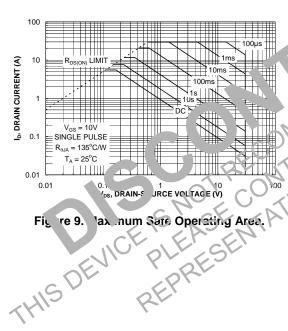



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.


Typical Characteristics: Q2

800 f = 1MHz V_{GS} = 0 V 600 CAPACITANCE (pF) C_{iss} 200 0 V_{DS}, P' ...N TO SURCE V LTAGE (V)

Figure 7. Gate Charge Characteristics.

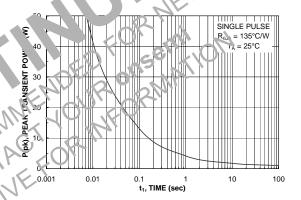


Figure 10. Single Pulse Maximum Power Dissipation.

Typical Characteristics Q1

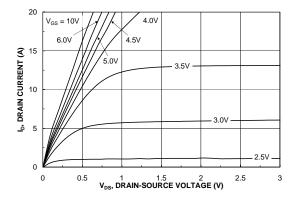


Figure 11. On-Region Characteristics.

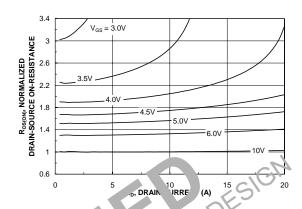


Figure 12. `n-. Psis' ance Mariation with Doin Core. and Gate Voltage.

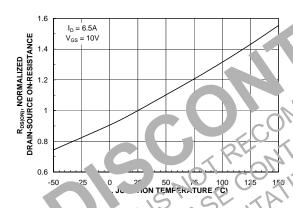


Fig. > 1° On-Resistance Variation with Temperature.

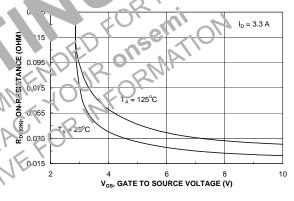


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

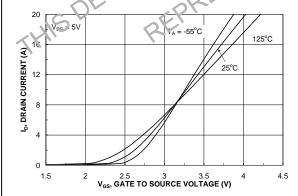


Figure 15. Transfer Characteristics.

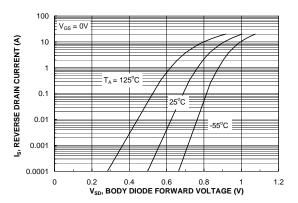
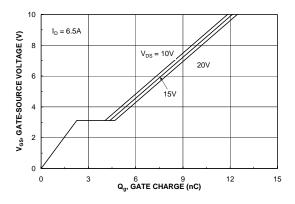



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics Q1

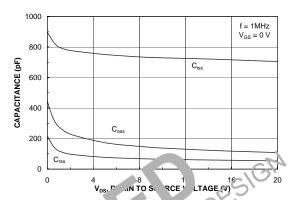
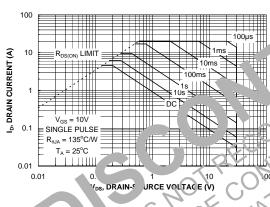



Figure 17. Gate Charge Characteristics.

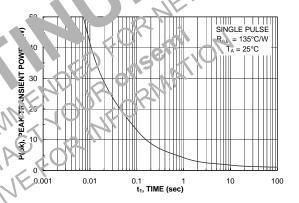
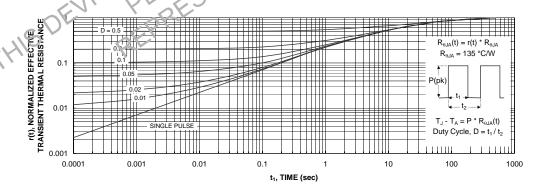
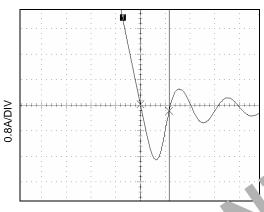


Fig e 19. Ia. mum Sate Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.




Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics

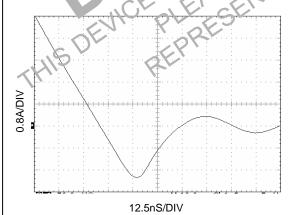
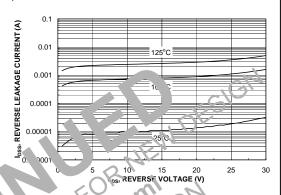
ON Semiconductor's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 22 shows the reverse recovery characteristic of the FDS6986AS.

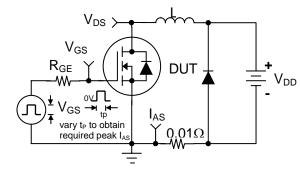
12.5nS/DIV

Figure 22. FDS6986AS reverse recorry

yncFET by diode harateristic.

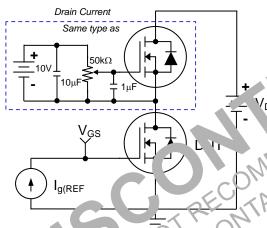
Ture 23 shows the reverse the body diode of an educed without SyncFET For comparison, irposes, F jure 23 shows the reverse recovery octe stic size MC FET equival produced without SyncF (FDS6696)

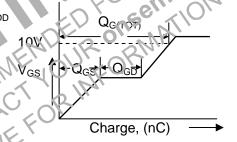




Figure 23. Non-SyncFET (FDS6690A) body diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

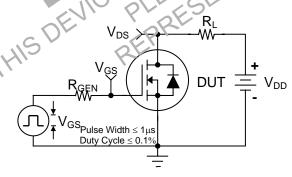
gure 24. SyncFET body diode reverse leakage versus arain-source voltage and temperature.


Typical Characteristics



BV_{DSS}
V_{DD}
V_{DD}

Figure 25. Unclamped Inductive Load Test Circuit


Figure 26. Unclamp a Inc octive Way Jorn

rigu > 2 ' Gate Charge Tost Circuit

Figure 28. Gate Charge Waveform

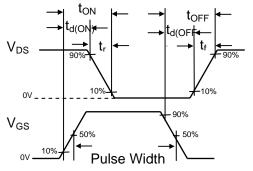


Figure 29. Switching Time Test Circuit

Figure 30. Switching Time Waveforms

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com