

FDW254PZ Datasheet

DiGi Electronics Part Number	FDW254PZ-DG
Manufacturer	onsemi
Manufacturer Product Number	FDW254PZ
Description	MOSFET P-CH 20V 9.2A 8TSSOP
Detailed Description	P-Channel 20 V 9.2A (Ta) 1.4W (Ta) Surface Mount 8-TSSOP

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FDW254PZ	onsemi
Series:	Product Status:
PowerTrench®	Obsolete
FET Type:	Technology:
P-Channel	MOSFET (Metal Oxide)
Drain to Source Voltage (Vdss):	Current - Continuous Drain (Id) @ 25°C:
20 V	9.2A (Ta)
Drive Voltage (Max Rds On, Min Rds On):	Rds On (Max) @ ld, Vgs:
1.8V, 4.5V	12mOhm @ 9.2A, 4.5V
Vgs(th) (Max) @ ld:	Gate Charge (Qg) (Max) @ Vgs:
1.5V @ 250µA	96 nC @ 4.5 V
Vgs (Max):	Input Capacitance (Ciss) (Max) @ Vds:
±8V	5880 pF @ 10 V
FET Feature:	Power Dissipation (Max):
-	1.4W (Ta)
Operating Temperature:	Mounting Type:
-55°C ~ 150°C (TJ)	Surface Mount
Supplier Device Package:	Package / Case:
8-TSSOP	8-TSSOP (0.173", 4.40mm Width)
Base Product Number:	
FDW25	

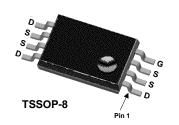
Environmental & Export classification

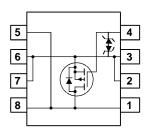
Moisture Sensitivity Level (MSL):	REACH Status:
1 (Unlimited)	REACH Unaffected
ECCN:	HTSUS:
EAR99	8541.29.0095

FDW254PZ

P-Channel 1.8V Specified PowerTrench^o MOSFET

General Description


This P-Channel 1.8V specified MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (1.8V - 8V).


Applications

- · Load switch
- Motor drive
- DC/DC conversion
- Power management

Features

- $\label{eq:RDS(ON)} \begin{array}{rcl} \bullet & -9.2 \mbox{ A}, -20 \mbox{ V}. & R_{DS(ON)} = & 12 \mbox{ } m\Omega \ @ \mbox{ } V_{GS} = -4.5 \mbox{ V} \\ R_{DS(ON)} = & 15 \mbox{ } m\Omega \ @ \mbox{ } V_{GS} = -2.5 \mbox{ V} \\ R_{DS(ON)} = & 21.5 \mbox{ } m\Omega \ @ \mbox{ } V_{GS} = -1.8 \mbox{ V} \end{array}$
- Rds ratings for use with 1.8 V logic
- ESD protection diode
- Low gate charge
- High performance trench technology for extremely low R_{DS(ON)}
- Low profile TSSOP-8 package

Absolute Maximum Ratings T_A=25°C unless otherwise noted

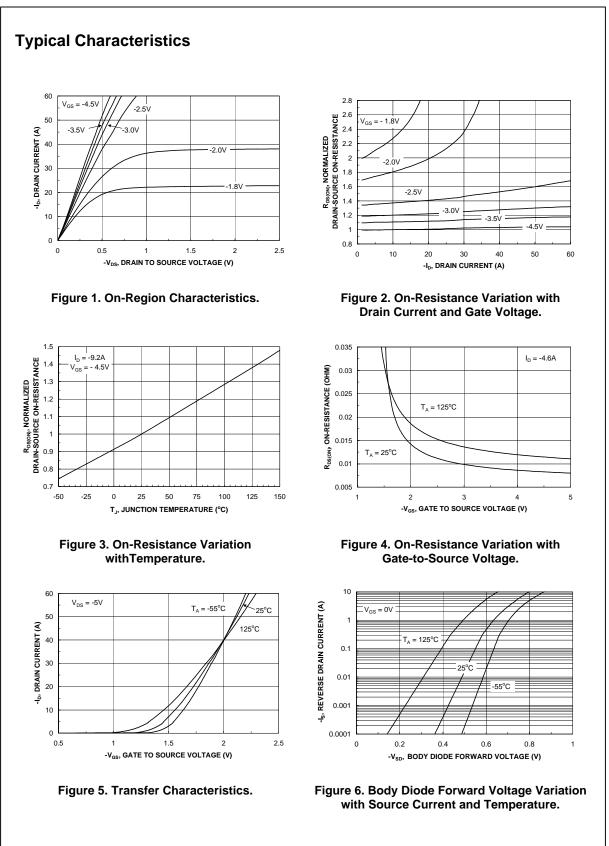
Symbol		Parameter		Ratings	Unit
V _{DSS}	Drain-Source	e Voltage		-20	V
V _{GSS}	Gate-Source	ource Voltage		±8	
D	Drain Currer	nt – Continuous	(Note 1)	-9.2	A
		– Pulsed		-50	
> _D	Power Dissi	pation	(Note 1a)	1.4	W
			(Note 1b)	1	
T _J , T _{STG}	Operating ar	nd Storage Junction Temp	erature Range	-55 to +150	°C
Therma	I Charact	eristics			
		eristics	ient (Note 1a)	96	°C/W
			ient (Note 1a) (Note 1b)	96 208	°C/W
R _{θJA}	Thermal Res	sistance, Junction-to-Ambi	(Note 1b)		°C/W
R _{eja} Packag	Thermal Res		(Note 1b)		C/W

©2008 Fairchild Semiconductor Corporation

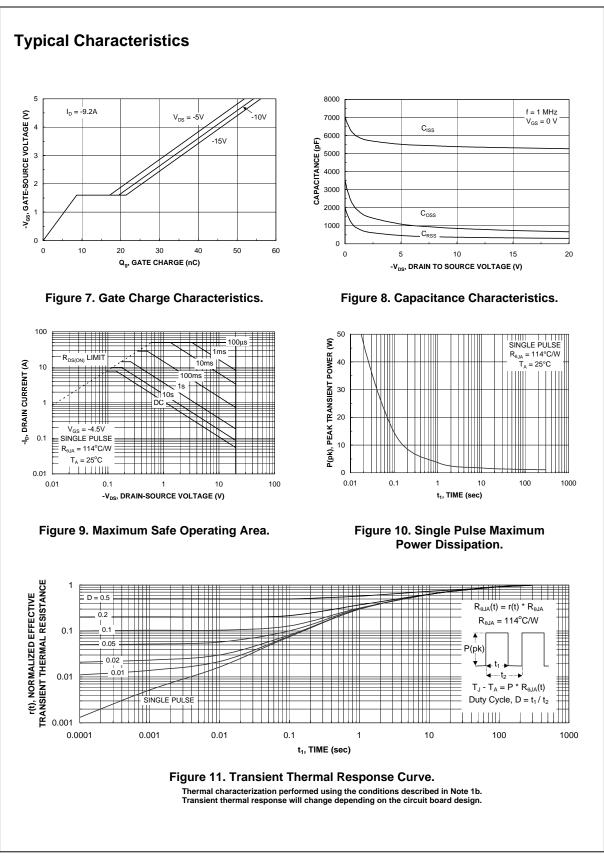
FDW254PZ Rev C1 (W)

July 2008

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
				- 76		
BV _{DSS}	acteristics Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{D} = -250 \mu A$	-20			V
	-		-20	-11		w mV/°C
$\Delta DVDSS \Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-11		mv/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$			-1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 8 \ V, \qquad V_{DS} = 0 \ V$			±10	μA
On Char	acteristics (Note 2)	•				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-0.4	-0.6	-1.5	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_{\rm p} = -250 \ \mu$ A, Referenced to 25°C		2		mV/°C
ΔT_{J}	Temperature Coefficient					
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -9.2 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -7.9 \text{ A}$		9	12	mΩ
	On-Resistance	$V_{GS} = -2.5 \text{ V}, I_D = -7.9 \text{ A}$ $V_{GS} = -1.8 \text{ V}, I_D = -6.5 \text{ A}$		11	15	
		$V_{GS} = -4.5 \text{ V}, I_D = -9.2 \text{ A}, T_J = 125^{\circ}\text{C}$		14 12	21.5 18	
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-50	12	10	А
g _{FS}	Forward Transconductance	$V_{DS} = -5 V$, $I_{D} = -9.2 A$		54		S
	c Characteristics					-
	Input Capacitance			5880		pF
	Output Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz	-	990		pF
Crss	Reverse Transfer Capacitance			560		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		4.9		Ω
-	ng Characteristics (Note 2)			-		
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$,		15	27	ns
t _r	Turn–On Rise Time	$V_{\text{DD}} = -10 \text{ V}, \qquad T_{\text{D}} = -1 \text{ A},$ $V_{\text{GS}} = -4.5 \text{ V}, \qquad R_{\text{GEN}} = 6 \Omega$		15	27	ns
t _{d(off)}	Turn–Off Delay Time	-		210	336	ns
t _f	Turn–Off Fall Time	-		100	160	ns
Q _q	Total Gate Charge	$V_{DS} = -10 \text{ V}, \qquad I_D = -9.2 \text{ A},$		60	96	nC
Q _{qs}	Gate–Source Charge	$V_{GS} = -4.5 V$		7		nC
Q _{qd}	Gate–Drain Charge	-		13		nC
•	ource Diode Characteristics	and Maximum Patings				
	Maximum Continuous Drain–Source				-1.2	Α
V _{SD}	Drain–Source Diode Forward	$V_{GS} = 0 V$, $I_S = -1.2 A$ (Note 2)		-0.5	-1.2	V
20	Voltage					-
t _{rr}	Reverse Recovery Time	$I_F = -9.2 \text{ A},$		35		ns
Q _{rr}	Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		21		nC

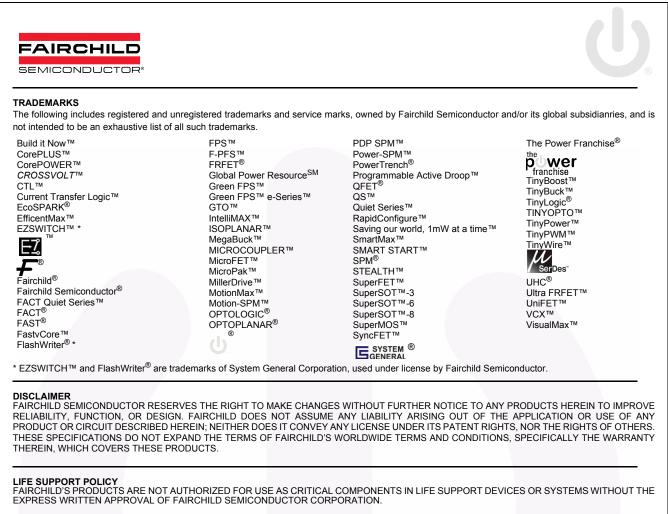

the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's boar a) $R_{\theta JA}$ is 96°C/W (steady state) when mounted on a 1 inch² copper pad on FR-4.

b) R_{0JA} is 208°C/W (steady state) when mounted on a minimum copper pad on FR-4.


2. Pulse Test: Pulse Width < μ s, Duty cycle < 2.0%.

FDW254PZ Rev. C1 (W)

FDW254PZ



FDW254PZ

FDW254PZ

FDW254PZ Rev. C1(W)

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	First Production

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>		
Marginary Marginary Marginary	Market	Marchine Marchine Image: Control of the sector of the sec	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.