

FJI5603DTU Datasheet

www.digi-electronics.com

DiGi Electronics Part Number	FJI5603DTU-DG
Manufacturer	onsemi
Manufacturer Product Number	FJI5603DTU
Description	TRANS NPN 800V 3A I2PAK
Detailed Description	Bipolar (BJT) Transistor NPN 800 V 3 A 5MHz 100 W Through Hole TO-262 (I2PAK)

https://www.DiGi-Electronics.com

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.

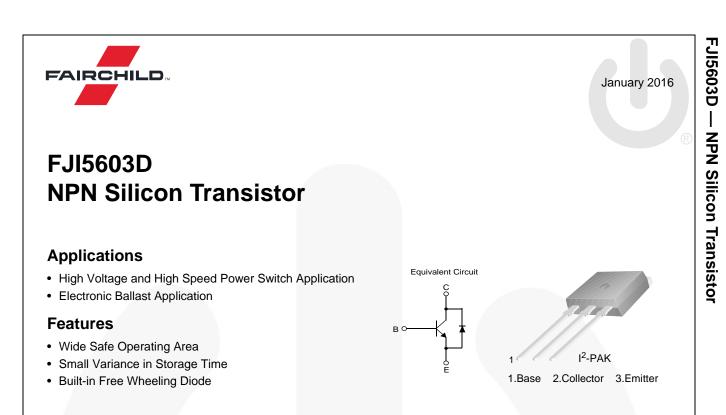
Purchase and inquiry

Manufacturer Product Number:	Manufacturer:
FJI5603DTU	onsemi
Series:	Product Status:
-3.02	Active
Transistor Type:	Current - Collector (Ic) (Max):
NPN	3 A
Voltage - Collector Emitter Breakdown (Max):	Vce Saturation (Max) @ lb, lc:
800 V	2.5V @ 200mA, 1A
Current - Collector Cutoff (Max):	DC Current Gain (hFE) (Min) @ lc, Vce:
100µA	20 @ 400mA, 3V
Power - Max:	Frequency - Transition:
100 W	5MHz
Operating Temperature:	Mounting Type:
150°C (TJ)	Through Hole
Package / Case:	Supplier Device Package:
TO-262-3 Long Leads, I2PAK, TO-262AA	ТО-262 (І2РАК)
Base Product Number:	
FJI5603	

Environmental & Export classification

RoHS Status:	Moisture Sensitivity Level (MSL):
ROHS3 Compliant	Not Applicable
REACH Status:	ECCN:
REACH Unaffected	EAR99
HTSUS:	
8541.29.0095	

Is Now Part of



ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

Ordering Information

Part Number	Marking	Package	Packing Method
FJI5603DTU	J5603D	TO-262 3L (I2PAK)	Rail

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	1600	V
V _{CEO}	Collector-Emitter Voltage	800	V
V _{EBO}	Emitter-Base Voltage	12	V
Ι _C	Collector Current (DC)	3	А
I _{CP}	Collector Current (Pulse) ⁽¹⁾	6	А
I _B	Base Current (DC)	2	А
I _{BP}	Base Current (Pulse) ⁽¹⁾	4	А
P _C	Power Dissipation ($T_C = 25^{\circ}C$)	100	W
Τ _J	Junction Temperature	150	°C
T _{STG}	Storage Junction Temperature Range	-65 to +150	°C
EAS	Avalanche Energy (T _J = 25°C, 8 mH)	3.5	mJ

Notes:

1. Pulse test: pulse width = 5 ms, duty cycle $\leq 10\%$

Thermal Characteristics⁽²⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Symbol Parameter		Unit
R _{θJC}	Thermal Resistance, Junction-to-Case	1.25	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	80	°C/W

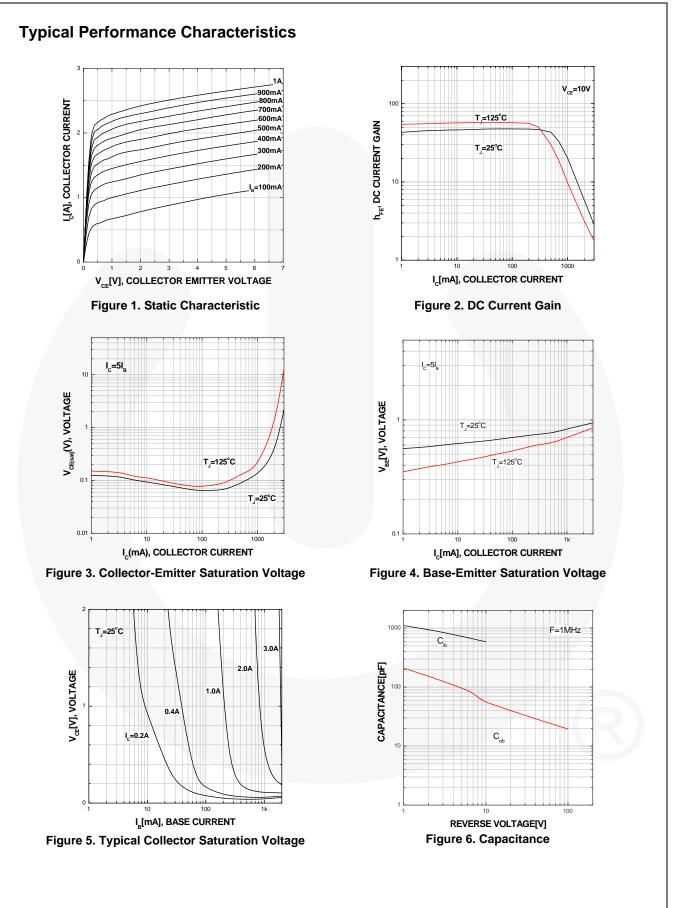
Note:

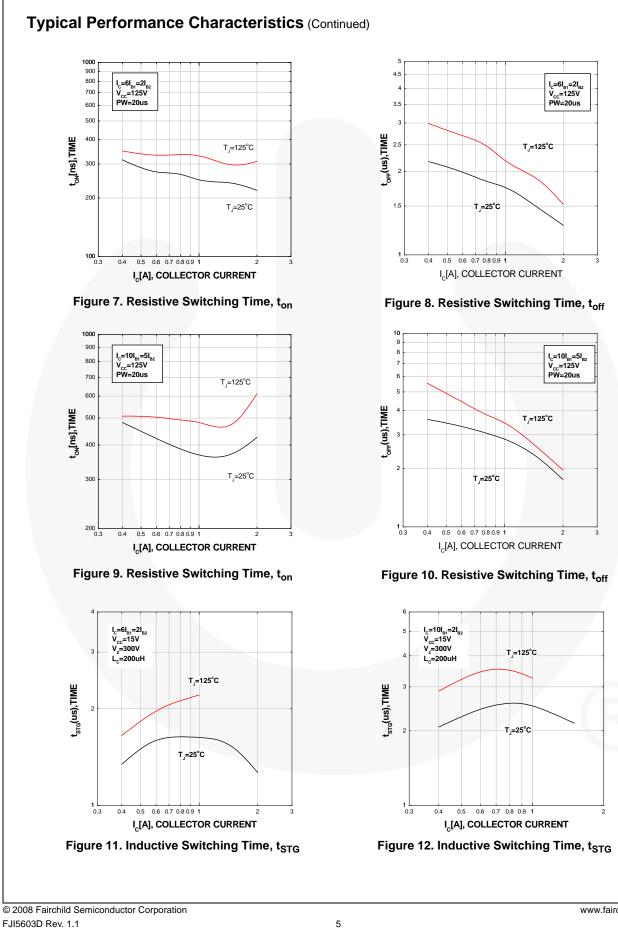
2. Device mounted on minimum pad size.

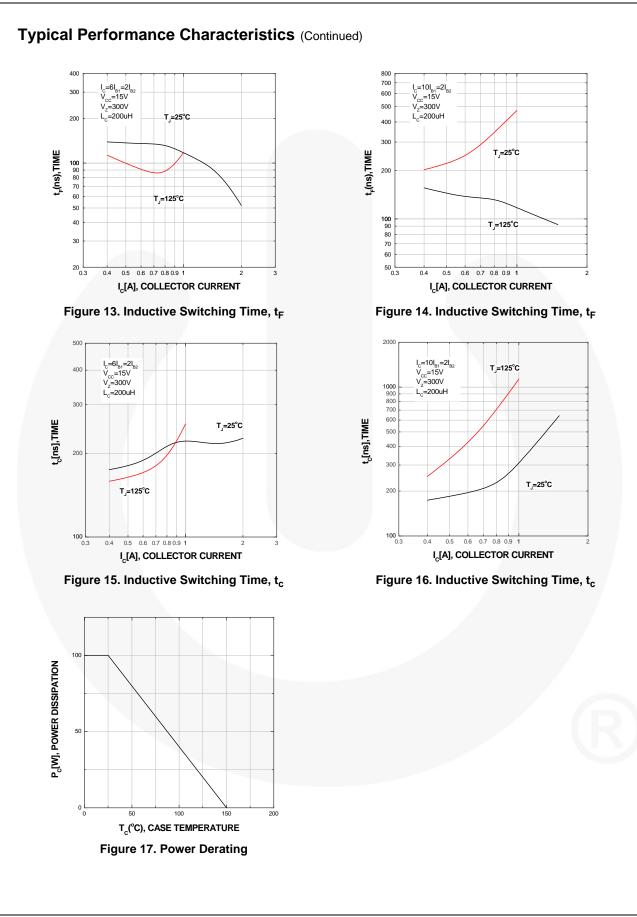
Electrical Characteristics⁽³⁾

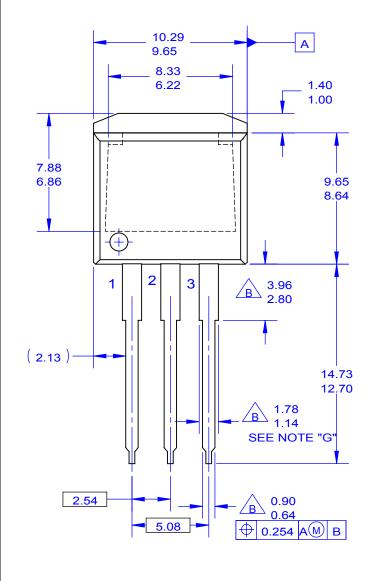
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 0.5 \text{ mA}, I_{\rm E} = 0$	I _C = 0.5 mA, I _E = 0		1689		V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 5$ mA, $I_{\rm B} = 0$		800	870		V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 0.5 {\rm mA}, I_{\rm C} = 0$		12.0	14.8		V
1	Collector Cut-Off Current	V _{CE} = 1600 V, V _{BE} = 0	$T_C = 25^{\circ}C$		0.01	100	μA
ICES	Collector Cut-Oir Current	$v_{CE} = 1000 v, v_{BE} = 0$	T _C = 125°C			1000	μA
laza	Collector Cut-Off Current	$V_{CE} = 800 \text{ V}, I_{B} = 0$	$T_C = 25^{\circ}C$		0.01	100	μA
I _{CEO}	Collector Out-Oir Out-ent	VCE = 000 V, IB = 0	T _C = 125°C			1000	μΛ
I _{EBO}	Emitter Cut-Off Current	$V_{EB} = 12 \text{ V}, \text{ I}_{C} = 0$			0.05	500	μA
		$V_{CE} = 3 \text{ V}, \text{ I}_{C} = 0.4 \text{ A}$	T _C = 25°C	20	29	35	
h	DC Current Gain		T _C = 125°C	6	15		
h _{FE}	DC Current Gain	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 5 \text{ mA}$ $\frac{T_{C} = 25^{\circ}\text{C}}{T_{C} = 125^{\circ}\text{C}}$	T _C = 25°C	20	43		
			20	46			
		$I_{\rm C} = 250 \text{ mA}, I_{\rm B} = 25 \text{ mA}$			0.50	1.25	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$			1.50	2.50	V
	Vollago	$I_{\rm C} = 1 \text{ A}, I_{\rm B} = 0.2 \text{ A}$			1.20	2.50	
		I _C = 500 mA, I _B = 50 mA	T _C = 25°C		0.74	1.20	
V _{BE} (sat)	Base-Emitter Saturation	$I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$	T _C = 125°C		0.61	1.10	V
vBE(Sat)	Voltage	$I_{\rm C} = 2 {\rm A}, I_{\rm B} = 0.4 {\rm A}$	T _C = 25°C		0.85	1.20	
		$T_{\rm C} = 2$ A, $T_{\rm B} = 0.4$ A $T_{\rm C} = 125^{\circ}{\rm C}$			0.74	1.10	
C _{ib}	Input Capacitance	$V_{EB} = 10 \text{ V}, \text{ I}_{C} = 0, \text{ f} = 1 \text{ MHz}$			745	1000	pF
C _{ob}	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1 \text{ MHz}$			56	500	pF
f _T	Current Gain Bandwidth Product	$I_{C} = 0.1 \text{ A}, V_{CE} = 10 \text{ V}$			5		MHz
V	Diada Fanward Valtaga	I _F = 0.4 A			0.76	1.20	V
V _F	Diode Forward Voltage	I _F = 1 A			0.83	1.50	V

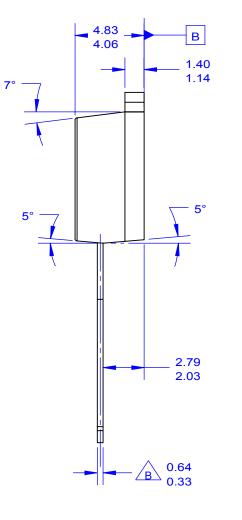

Note:


3. Pulse test: pulse width = 20 $\mu s,$ duty cycle \leq 10%.


Electrical Characteristics (Continued)


Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
RESISTIV	E LOAD SWITCHING (D.C \leq 10%,	Pulse Width = 20 μs)				
t _{ON}	Turn-On Time	$I_{\rm C} = 0.3 \text{A}, I_{\rm B1} = 50 \text{mA},$		400	600	ns
t _{STG}	Storage Time	$I_{B2} = 150 \text{ A}, V_{CC} = 125 \text{ V},$	1.9	2.1	2.3	μs
t _F	Fall Time	$R_L = 416 \Omega$		310	1000	ns
t _{ON}	Turn-On Time	$I_{\rm C} = 0.5 \text{ A}, I_{\rm B1} = 50 \text{ mA},$		600	1100	ns
t _{STG}	Storage Time	$I_{B2} = 250 \text{ mA}, V_{CC} = 125 \text{ V},$		1.3	1.5	μs
t _F	Fall Time	$R_L = 250 \Omega$		180	350	ns
INDUCTIV	'E LOAD SWITCHING (V_{CC} = 15 V)				
t _{STG}	Storage Time	I _C = 0.3 A, I _{B1} = 50 mA,	0.8		1.2	μs
t _F	Fall Time	$I_{B2} = 150 \text{ mA}, V_Z = 300 \text{ V},$		170	250	ns
t _C	Cross-Over Time	L _C = 200 H		180	250	ns
t _{STG}	Storage Time	$I_{C} = 0.5 \text{ A}, I_{B1} = 50 \text{ mA},$ $I_{B2} = 250 \text{ mA}, V_{Z} = 300 \text{ V},$	0.8		1.2	μs
t _F	Fall Time			140	175	ns
t _C	Cross-Over Time	L _C = 200 H		170	200	ns



NOTES:

A. EXCEPT WHERE NOTED CONFORMS TO TO262 JEDEC VARIATION AA. B. DOES NOT COMPLY JEDEC STD. VALUE. C. ALL DIMENSIONS ARE IN MILLIMETERS. D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. E. DIMENSION AND TOLERANCE AS PER ANSI Y14.5-1994. F. LOCATION OF PIN HOLE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF PACKAGE) G. MAXIMUM WIDTH FOR F102 DEVICE = 1.35 MAX. H. DRAWING FILE NAME: TO262A03REV6

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

OUR CERTIFICATE

DiGi provide top-quality products and perfect service for customer worldwide through standardization, technological innovation and continuous improvement. DiGi through third-party certification, we striciy control the quality of products and services. Welcome your RFQ to Email: Info@DiGi-Electronics.com

	<section-header></section-header>	<section-header><section-header></section-header></section-header>	
Image: Second	Here and the second sec	Hand and a set of the	

Tel: +00 852-30501935

RFQ Email: Info@DiGi-Electronics.com

DiGi is a global authorized distributor of electronic components.